Basics of group actions and Fuchsian groups; Fundamental domains; Dirichlet polygons

Hui Kam Tong, Cheng Ka Long 1155109049, 1155109623 Course Teacher: Prof. Yi-Jen LEE

Department of Mathematics, The Chinese University of Hong Kong

MATH4900E Presentation 6, 9th November 2020

KORKAR KERKER EL POLO

Outline

- 1. [Basics of group actions](#page-2-0)
- 2. [Fuchsian groups](#page-28-0)
- 3. [Fundamental domains](#page-51-0)

1

メロトメタトメミトメミト (ミ) の女々

- 4. [Dirichlet polygons](#page-70-0)
- 5. [Reference](#page-88-0)

Outline

- 1. [Basics of group actions](#page-2-0)
- 2. [Fuchsian groups](#page-28-0)
- 3. [Fundamental domains](#page-51-0)
- 4. [Dirichlet polygons](#page-70-0)
- 5. [Reference](#page-88-0)

Group actions:

A group homomorphism of a given group into the group of transformations of the space.

Definition (Left action)

A group G is said to act on a set X when there is a map ζ : $G \times X \rightarrow X$ such that the following conditions hold for all elements $x \in X$:

1. $\zeta(id, x) = x$ where *id* is the identity element of G.

2. $\zeta(q,\zeta(h,x)) = \zeta(qh,x)$ for all $q, h \in G$.

Here, G is called a transformation group, ζ is called the group action.

3

Type of group actions:

In topological space X , there are four actions of G :

1. Wandering

If any $x \in X$ has a neighbourhood U such that $\{ q \in G \mid q \cap U \neq \emptyset \}$ is finite.

- 2. Properly discontinuously
- 3. Proper

If G is a topological group and the map from $G \times X \to X \times X : (q, x) \mapsto (q \cdot x, x)$ is proper.

4. Covering space action If any $x \in X$ has a neighbourhood U such that $\{ q \in G \mid q \cdot U \cap U \neq \emptyset \} = \{ id \}$

4

Preliminaries on group actions:

5

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

- 1. Discreteness
- 2. Orbits
- 3. Stabilizer

Recall:

 $M\ddot{\mathrm{o}}b(\mathbb{H})$ and $M\ddot{\mathrm{o}}b(\mathbb{D})$ are groups (which are under composition). The collection of those Möbius transformations form a group.

General linear group: $GL(2, \mathbb{R})$

Special linear group: $SL(2, \mathbb{R})$

Projective special linear group: $PSL(2, \mathbb{R})$

 ${a, b, c, d \in \mathbb{R} }$

6

Recall: $\text{M\"ob}(\mathbb{H}) := \{ \gamma : z \mapsto \frac{az+b}{cz+d} \mid ad - bc = 1, a, b, c, d \in \mathbb{R} \} \text{ satisfies: }$ (a) Each $\gamma \in \text{M\"ob}(\mathbb{H})$ is an isometry. $(d_{\mathbb{H}}(\gamma(z_1), \gamma(z_2)) = d_{\mathbb{H}}(z_1, z_2))$

\n- (b) Möb(
$$
\mathbb{H}
$$
) is a group, i.e.:
\n- (i) Exists an identity element $id. (id(z) = z, \forall z \in \mathbb{H})$
\n- (ii) $\gamma_1, \gamma_2 \in \text{M\"ob}(\mathbb{H}) \Rightarrow \gamma_1 \circ \gamma_2 \in \text{M\"ob}(\mathbb{H})$ (Not abelian)
\n- (iii) $\forall \gamma \in \text{M\"ob}(\mathbb{H}) \Rightarrow \exists \gamma^{-1} \in \text{M\"ob}(\mathbb{H})$ $(\gamma \circ \gamma^{-1} = \gamma^{-1} \circ \gamma = id)$
\n- (iv) $\gamma_1, \gamma_2, \gamma_3 \in \text{M\"ob}(\mathbb{H}) \Rightarrow (\gamma_1 \circ \gamma_2) \circ \gamma_3 = \gamma_1 \circ (\gamma_2 \circ \gamma_3)$
\n

7

Discreteness is important in geometry, topology and metric spaces.

Metric space

A mathematical space on which it is possible to define the distance between two points in the space.

8

KORKA SERKER ORA

Let $d(x, y)$ be the distance between from x to y.

1:
$$
d(x, y) > 0
$$
 if $x \neq y$; $d(x, x) = 0$
\n2: $d(x, y) = d(y, x)$
\n3: $d(x, y) \leq d(x, z) + d(z, y)$

Examples of metric spaces:

i. \mathbb{R}^n with the Euclidean metric

$$
d((x_1, ..., x_n), (y_1, ..., y_n))
$$

$$
= ||(x_1,...,x_n) - (y_1,...,y_n)||
$$

$$
= \sqrt{|x_1 - y_1|^2 + \dots + |x_n - y_n|^2}
$$

ii. the upper half-plane $\mathbb H$ with the metric $d_{\mathbb H}$ that we defined in our last presentation, i.e.

> $d_{\mathbb{H}}(z, z') = inf\{ \text{ length}_{\mathbb{H}}(\sigma) \mid \sigma \text{ is a piecewise} \}$ continuously differentiable path with end-points z and z' }

Metric space

Let (X, d) be a metric space. A subset $Y \subset X$ is discrete if every point $y \in Y$ is isolated.

Definition

A point $y \in Y$ is isolated if there exist $\delta > 0$ such that if $y' \in Y$ and $y' \neq y$, then $d(y, y') > \delta$.

Examples:

- 1. In any metric space, a single point $\{x\}$ is discrete.
- 2. The set of rationals \mathbb{Q} is not a discrete subgroup of \mathbb{R} since there are infinitely many distinct rationals arbitrarily close to any given rational.

Two Möbius transformations of $\mathbb H$ are close if the coefficients (a, b, c, d) defining them are close.

But different coefficients (a, b, c, d) can give the same Möbius transformations.

Recall:

Möbius transformation $\gamma(z) = \frac{az+b}{cz+d}$ is normalised if $ad - bc = 1$. But, if $\gamma(z) = \frac{az+b}{cz+d}$ is normalised, then $\gamma(z) = \frac{-az-b}{-cz-d}$ is also normalised.

12

The normalised Möbius transformations of $\mathbb H$ given by

$$
\gamma_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}
$$

and

$$
\gamma_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2}
$$

If either (a_1, b_1, c_1, d_1) and (a_2, b_2, c_2, d_2) are close or (a_1, b_1, c_1, d_1) and $(-a_2, -b_2, -c_2, -d_2)$ are close, then $\gamma_1(z)$ and $\gamma_2(z)$ are close.

13

Formula:

$$
d_{M\ddot{o}b}(\gamma_1, \gamma_2) = \min \{||(a_1, b_1, c_1, d_1) - (a_2, b_2, c_2, d_2)||, ||(a_1, b_1, c_1, d_1) - (-a_2, -b_2, -c_2, -d_2)||\}
$$

Think of Möbius transformations of H being close if they 'look close'.

Same as Möbius transformations of D .

KO K K @ K K 통 K K 통 K 및 K YO Q @

Definition Let X be a subset of Möb(\mathbb{H}).

Then $\gamma \in X$ is isolated if there exist $\delta > 0$ such that $\forall \gamma' \in X - \{\gamma\},\$ we have $d_{\text{M\"ob}}(y, y') > \delta.$

We say that a subset $X \subset M\ddot{\mathrm{o}}b(\mathbb{H})$ is discrete if every $\gamma \in X$ is isolated.

Remark:

We could equally well work with isometries of $(\mathbb{D}, d_{\mathbb{D}})$ or any other model of hyperbolic space.

15

Definition

A subgroup $G \subset SL(2,\mathbb{R})$ is a discrete group if G has no accumulation points in $SL(2,\mathbb{R})$.

Accumulation points

 x is said to be an accumulation point in A if every open set containing x contains at least one other point from A.

Definition

A subset Z of $\mathbb H$ is discrete if for each $z \in \mathbb Z$, there exists some $\varepsilon > 0$ so that $B(z, \varepsilon) \bigcap Z = \{z\}$, where

$$
B(z, \varepsilon) = \{ w \in \mathbb{H} \mid d_{\mathbb{H}}(z, w) < \varepsilon \}
$$

is the open hyperbolic disc with hyperbolic centre z and hyperbolic radius ε .

That is same as each point of Z can be isolated from all the other points of Z.

Let Γ be a subgroup of Möb(\mathbb{H}), and suppose Γ is not discrete. That is, there is some $z \in \mathbb{H}$ so that the set $\Gamma(z)$ is not a discrete subset of H.

By the definition of discreteness, there exists an element $\gamma(z)$ of $\Gamma(z)$ so that for each $\varepsilon > 0$, the set $\Gamma \bigcap B(\gamma(z), \varepsilon)$ contains a point other than $\gamma(z)$.

For each $n \in \mathbb{N}$, choose an element γ_n of Γ so that $\gamma_n(z) \neq \gamma(z)$ and so that

$$
\gamma_n(z) \in \Gamma(z) \bigcap B(\gamma(z), \ \frac{1}{n}).
$$

As $n \to \infty$, we have that $d_{\mathbb{H}}(\gamma(z), \gamma_n(z)) \to 0$. Pass to a subsequence of $\{\gamma_n\}$, called $\{\gamma_n\}$ to avoid the proliferation of subscripts, so that the $\gamma_n(z)$ are distinct. We now have a sequence $\{\gamma_n\}$ of distinct elements of Γ so that $\{\gamma_n\}$ converges 18to $\gamma(z)$. KID KA KERKER E VOOR

Lemma 1

Let Γ be a subgroup of Möb(\mathbb{H}). Γ contains a sequence of distinct elements converging to an element μ of Möb(\mathbb{H}) if and only if Γ contains a sequence of distinct elements converging to the identity.

Proposition 1

Let Γ be a discrete subgroup of Möb(\mathbb{H}). If X is a subgroup of Γ , then X is discrete.

Conversely, there are a few special cases in which the discreteness of a subgroup of Γ implies the discreteness of Γ . We begin considering subgroups of $M\ddot{\mathrm{o}}b^+(\mathbb{H})$ with discrete normal subgroups. 19

KOL ET KENKEN ADNA

Proposition 2

Let Γ be a discrete subgroup of M $\ddot{\text{ob}}^+(\mathbb{H})$ and let X be a non-trivial normal subgroup of Γ. If X is discrete, then Γ is discrete.

Proof:

To prove this proposition, we will use the contrapositive.

Suppose that Γ is not discrete and let $\{\gamma_n\}$ be a sequence of distinct elements of Γ coverging to the identity.

Choose some element μ of X, other than the identity, and consider the sequence $\{\gamma_n^{-1} \circ \mu \circ \gamma_n\}.$

Observe that $\{\gamma_n^{-1} \circ \mu \circ \gamma_n\}$ is a sequence of elements of X.

Since $\{\gamma_n\}$ converges to the identity, we have that $\{\gamma_n^{-1}\}$ converges to the identity as well, and so $\{\gamma_n^{-1} \circ \mu \circ \gamma_n\}$ converges to μ .

Then since γ_n are distinct and are converging to the identity, $\gamma_n^{-1} \circ \mu \circ \gamma_n$ are distinct.

Therefore, X is not discrete.

Proposition 3

Let Γ be a subgroup of Möb(\mathbb{H}), and let X be a finite index subgroup of Γ . If X is discrete, then Γ is discrete.

Proof: First, we need to express Γ as a coset decomposition with respect to X , that is:

$$
\Gamma = \bigcup_{k=0}^{p} \alpha_k X,
$$

where $\alpha_0, \cdots, \alpha_p$ are elements of Γ .

22

Suppose that Γ is not discrete, and let $\{\gamma_n\}$ be a sequence of distinct elements of Γ converging to the identity.

For n, we can write $\gamma_n = \alpha_{k_n} \mu_n$, where $0 \leq k_n \leq p$ and $\mu_n \in X$. Since there are infinitely many elements in the sequence, there is some fixed q satisfying $0 \le q \le p$, so that $k_n = q$ for infinitely many n.

So, consider the subsequence $\{\gamma = \alpha_q \mu_m\}$ consisting of those elements of the sequence for which $k_n = q$.

Since $\{\gamma_m\}$ converges to the identity, we have that $\{\alpha_q\mu_m\}$ converges to the identity as well. Hence, we have that $\{\mu_m\}$ converges to α_q^{-1} .

By the lemma, X is not discrete, a contradiction.

Orbits

Let Γ be a discrete subgroup of Möb(\mathbb{H}).

Definition

Let $z \in \mathbb{H}$. The orbit $\Gamma(z)$ of z under Γ is the set of all points of H that we can reach by applying elements of Γ to z:

$$
\Gamma(z):=\{\gamma(z)\ |\ \gamma\in\Gamma\}.
$$

Orbits

Example:

Let $\Gamma(z) = \{ \gamma(z) = \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}.$ Let $z=i$, then we have,

$$
\Gamma(i) = \{ \frac{ai+b}{ci+d} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}
$$

Example:

Let $\Gamma(z) = \{ \gamma(z) = \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}.$ Let $z = 0 \in \partial \mathbb{H}$, then we have,

$$
\Gamma(0) = \{ \frac{b}{d} \mid ad - bc = 1 \}
$$

$$
= \mathbb{Q} \cup \{ \infty \}.
$$

An irrational point on $\mathbb R$ can always be arbitrarily well approximated by rationals.

Stabilizer

Definition Let $z \in \mathbb{H}$. The stabilizer Γ_z of z under Γ is defined as:

$$
\Gamma_z:=\{\gamma\in\Gamma\ |\ \gamma(z)=z\}.
$$

Theorem

Let Γ be a subgroup of Möb(\mathbb{H}). If Γ is discrete, then the stabilizer

$$
\Gamma_z := \{ \gamma \in \Gamma \mid \gamma(z) = z \}.
$$

is finite for every $z \in \mathbb{H}$.

But, the converse of this theorem does not hold.

26

Stabilizer

Proof by using an example:

Consider the subgroup

$$
\Gamma = \{m_\lambda(z) = \lambda z \ | \ \lambda > 0\}
$$

of $M\ddot{\mathrm{o}}b(\mathbb{H}).$

Then Γ is not a discrete subgroup of Möb(\mathbb{H}).

However, the stabilizer Γ_z is trivial for every $z \in \mathbb{H}$.

27

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Outline

- 1. [Basics of group actions](#page-2-0)
- 2. [Fuchsian groups](#page-28-0)
- 3. [Fundamental domains](#page-51-0)
- 4. [Dirichlet polygons](#page-70-0)
- 5. [Reference](#page-88-0)

Definition

A Fuchsian group is a discrete subgroup of either $M\ddot{\mathbf{o}}$ b(\mathbb{H}) or $M\ddot{\mathrm{o}}b(\mathbb{D}).$

Examples.

- 1. Any finite subgroup of Möb (\mathbb{H}) or Möb (\mathbb{D}) is a Fuchsian group because any finite subset of any metric space is discrete.
- 2. As a specific example in the upper half-plane, let

$$
\gamma_{\theta}(z) = \frac{\cos(\theta/2)z + \sin(\theta/2)}{-\sin(\theta/2)z + \cos(\theta/2)}
$$

be a rotation around i.

Let $q \in \mathbb{N}$. Then $\{\gamma_{2\pi i/q} \mid 0 \leq j \leq q-1\}$ is a finite subgroup. **KORKAR KERKER EL POLO**

3. The subgroup of integer translations

 ${\gamma_n(z) = z + n \mid n \in \mathbb{Z}}$ is a Fuchsian group. The subgroup of all translations $\{\gamma_b(z) = z + b \mid b \in \mathbb{R}\}\$ is not a Fuchsian group as it is not discrete.

- 4. The subgroup $\Gamma = \{ \gamma_n(z) = 2^n z \mid n \in \mathbb{Z} \}$ is a Fuchsian group.
- 5. The subgroup $\Gamma = \{id\}$ containing only the identity Möbius transformation is a Fuchsian group. We call it the trivial Fuchsian group.
- 6. If Γ is a Fuchsian group and $\Gamma_1 < \Gamma$ is a subgroup, then Γ_1 is a Fuchsian group.

7. One of the most important Fuchsian groups is the modular group $PSL(2, \mathbb{Z})$. This is the group given by Möbius transformations of H of the form

$$
\gamma(z) = \frac{az+b}{cz+d}, \ a, \ b, \ c, \ d \in \mathbb{Z}, \ ad-bc = 1
$$

8. Let $q \in \mathbb{N}$. Define

$$
\Gamma_q = \{ \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad-bc = 1, b, c \text{ are divisible by } q \}.
$$

This is called the level q modular group or the congruence subgroup of order q.

31

Example (3):
Let
$$
\gamma(z) = z + n
$$
. Then $\Gamma = \{..., \gamma^{-1}, id, \gamma, \gamma^2, ...\}$

Note that $\gamma^a(z) = z + an$ and $\gamma^b(z) = z + bn$ for $a, b \in \mathbb{Z}$ for $a \neq b$,

$$
\gamma^a(z) = \frac{(1)z + an}{(0)z + 1}
$$

and

$$
\gamma^{b}(z) = \frac{(1)z + bn}{(0)z + 1}
$$

Thus
$$
d_{M\ddot{o}b}(\gamma^a, \gamma^b) = \min\{|an - bn|, |an + bn|\}
$$

 $\ge \frac{|n|}{2} > 0$, for $a \ne b$

Example (7): Let $\Gamma = \{ \gamma(z) = \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \}$ First, need to prove it is a group. Let

$$
\gamma_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}, \ a_1, b_1, c_1, d_1 \in \mathbb{Z}, \ a_1 d_1 - b_1 c_1 = 1
$$

and

$$
\gamma_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2} , \ a_2, b_2, c_2, d_2 \in \mathbb{Z}, \ a_2 d_2 - b_2 c_2 = 1
$$

Thus $d_{M\ddot{o}b}(\gamma_1, \gamma_2) \geq 1 > 0$ Therefore Γ is a Fuchsian group.

33

Proposition 4

Let Γ be a subgroup of Möb(\mathbb{H}). The following are equivalent:

- i. Γ is a discrete subgroup of Möb(\mathbb{H}) (i.e. Γ is a Fuchsian group);
- ii. the identity element of Γ is isolated.

Proof:

- $i \Rightarrow ii$: is trivial from the definition.
- ii \Rightarrow i: Given $\gamma \in \Gamma$, we can consider the continuous map:

$$
\begin{cases} B_{\text{M\"ob}}(\gamma, \ \varepsilon) & \xrightarrow{f} f(B_{\text{M\"ob}}(\gamma, \ \varepsilon)) \subseteq \text{M\"ob}(\mathbb{H}) \\ \gamma' & \xrightarrow{f} \gamma^{-1} \gamma' \text{ (Multiply by } \gamma^{-1}) \end{cases}
$$

where $B_{M\ddot{\sigma}}(\gamma, \varepsilon) = {\gamma' | d_{M\ddot{\sigma}}(\gamma, \gamma') < \varepsilon}$ for some $\varepsilon > 0$. **KOD START ARE A BUILDING**

Since id is isolated, we can choose $\delta > 0$ with $B_{\text{M\"ob}}(id, \delta) \cap \Gamma = \{id\}.$

Since f is a homeomorphism onto its image and $f(\gamma) = id$, then we can choose $\varepsilon > 0$ which is small enough that $f(\mathbf{B}(\gamma, \varepsilon)) \subset \mathbf{B}(id, \delta)$

Then, since $f(\mathcal{B}(\gamma, \varepsilon)) \cap \Gamma = \{id\}$, therefore $\mathcal{B}(\gamma, \varepsilon) \cap \Gamma = \{\gamma\}$

35
Fuchsian groups

Theorem (Jørgensen's inequality)

Let $\Gamma \subseteq \text{M\"ob}(\mathbb{H})$ be generated by two elements $\gamma_1, \gamma_2 \in \text{M\"ob}(\mathbb{H})$. A necessary condition for Γ to be Fuchsian is that

$$
\max\{||\gamma_1 - id||, ||\gamma_2 - id||\} > \frac{7}{50}
$$

Refer to The Geometry of Discrete Groups, P. 107.

Theorem (Shimizu's Lemma) If Γ is a Fuchsian group and $A =$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma$, then for any $B =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, we have either $c = 0$ or $|c| \ge 1$.

36

Proposition 5

Let Γ be a subgroup of Möb(\mathbb{H}). Then the following are equivalent:

- i. Γ is a Fuchsian group;
- ii. For each $z \in \mathbb{H}$, the orbit $\Gamma(z)$ is a discrete subset of \mathbb{H} .

Suppose this statement holds in the case of D.

Fuchsian groups

Example:

Let $\Gamma = \{ \gamma_n \mid \gamma_n(z) = 2^n z, \ n \in \mathbb{Z} \}.$ Fix $z \in \mathbb{H}$. Then the orbit of z is

 $\Gamma(z) = \{2^n z \mid n \in \mathbb{Z}\}.$

Observe that the points $2^n z$ lie on the (Euclidean) straight line through the origin inclined at angle $arg(z)$. Fix $2^{n}z$ and let $\delta = 2^{n-1} |z|.$ Then, $|2^mz - 2^nz| \ge \delta$ whenever $m \ne n$. Hence $\Gamma(z)$ is discrete.

Fuchsian groups

Example:

Fix $k > 0$, $k \neq 1$. Consider the subgroup of Möb(H) generated by the Möbius transformations of $\mathbb H$ given by

$$
\gamma_1(z) = z + 1, \ \gamma_2(z) = kz.
$$

First consider the orbit $\Gamma(i)$ of i. Assume that $k > 1$, then observe that

$$
\gamma_2^{-n} \gamma_1^m \gamma_2^n(i) = i + \frac{m}{k^n}.
$$

Assume that $0 < k < 1$, then observe that

$$
\gamma_2^n \gamma_1^m \gamma_2^{-n}(i) = i + mk^n.
$$

Choose an arbitrarily large n. Then i is not an isolated point of 39the orbit $\Gamma(i)$. Hence $\Gamma(i)$ is not discrete.

Definition

The group Γ acts properly discontinuously on $\mathbb H$ if $\forall z_0 \in \mathbb H$ and any compact set $K \subseteq \mathbb{H}$, the set $\{ \gamma \in \Gamma \mid \gamma(z_0) \in K \}$ is finite.

Note that we could replace K by closed ball which is:

$$
\overline{\mathcal{B}(p, r)} = \{ z \in \mathbb{H} \mid \mathcal{d}(p, z) \le r \}
$$

40

KORKA SERKER ORA

for any $\varepsilon > 0$.

Lemma 2

Let $\Gamma \subseteq M\ddot{\mathrm{o}}b(\mathbb{H})$ be a subgroup acting properly discontinuously on H.

Let $z_0 \in \mathbb{H}$ be fixed by $\gamma_0 \in \Gamma$. $(\gamma_0(z_0) = z_0)$

Then \exists neighbourhood $W \ni z_0$ such that no other point in W is fixed by a non-identity element of Γ .

Proof by contradiction:

Assume for a contradiction
$$
\begin{cases} z_n & \to z_0 \ (n \ge 1) \\ \exists \gamma_n \in \Gamma - \{e\}, \ \gamma_n(z_n) = z_n \end{cases}
$$

Therefore, $\forall \varepsilon > 0$, $\exists N_1$ such that $\forall n > N_1$, $d(z_n, z_0) < \varepsilon$. Since :

i
$$
\overline{B(z_0, 2\varepsilon)} = \{ z \in \mathbb{H} \mid d(z, z_0) \leq 2\varepsilon \}
$$
 is a compact.

ii Γ acts discontinuously on \mathbb{H} . \Rightarrow { $\gamma \in \Gamma \mid \gamma(z_0) \in \overline{\mathcal{B}_{2\varepsilon}(z_0)}$ } is finite.

Therefore,
$$
\exists N_2 \ge 1
$$
, $\forall n > N_2$, $d(\gamma_n(z_0), z_0) > 2\varepsilon$.
For $n > \max\{N_1, N_2\}$:
$$
\begin{cases} d(z_n, z_0) < \varepsilon \\ d(\gamma_n(z_0), z_0) > 2\varepsilon \end{cases}
$$

Hence:

$$
2\varepsilon < d(\gamma_n(z_0), z_0) \le d(\gamma_n(z_0), \gamma_n(z_n)) + d(\gamma_n(z_n), z_0)
$$
\n
$$
= d(z_0, z_n) + d(z_n, z_0)
$$
\n
$$
= 2d(z_0, z_n)
$$
\n
$$
< 2\varepsilon
$$

43

KO K K @ K K 통 K K 통 K 및 K YO Q @

Contradiction arises.

Corollary

If Γ acts properly discontinuously on H, then we can find $z_0 \in \mathbb{H}$ which is not fixed by any $\gamma \in \Gamma - \{id\}.$

Lemma 3

For $z_0 \in \mathbb{H}$ and a compact set $K \subseteq \mathbb{H}$:

$$
E = \{ \gamma(z) = \frac{az+b}{cz+d} \mid ad-bc = 1, a, b, c, d \in \mathbb{R}, \gamma(z_0) \in K \} (\subseteq \mathbb{R}^4)
$$

is compact.

44

Proof:

Since K is compact, we can choose $k_1, k_2 > 0$: $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $k_1 \leq \text{Im}(\gamma(z_0)) = \frac{\text{Im}(z_0)}{|cz_0+d|^2}$ (1) $k_2 \geq \gamma(z_0) = |\frac{az_0+b}{cz_0+d}|$ $\frac{az_0+ b}{cz_0+d}$ (2) Thus, $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $|cz_0 + d| \leq \sqrt{\frac{\text{Im}(z_0)}{k_1}} = c_1$ (3) $|az_0 + b| \le k_2 \sqrt{\frac{\text{Im}(z_0)}{k_1}}$ $\frac{a_1}{k_1} = c_2$ (4) From these constraints on a, b, c, d , we can deduce that E is bounded. Clearly it is also closed, and thus compact.

45

Proposition 6

Let Γ be a subgroup of Möb(\mathbb{H}). The following are equivalent:

- (i) Γ is Fuchsian;
- (ii) Γ acts properly discontinuously on \mathbb{H} .

Proof:

 $(i) \Rightarrow (ii)$: Let $z_0 \in \mathbb{H}$ and $K \subseteq \mathbb{H}$ be compact. Since $\{ \gamma \in \Gamma \mid \gamma(z_0) \in K \} = \{ \gamma \in M \ddot{\mathrm{o}}b(\mathbb{H}) \mid \gamma(z_0) \in K \} \cap \Gamma$, the intersection is finite. (Γ acts properly discontinuously.)

 $(ii) \Rightarrow (i):$ Assume Γ acts properly discontinuously on H.

By the Corollary: $\exists z \in \mathbb{H}$ such that if $\gamma \in \Gamma$ and $\gamma(z) = z \Rightarrow \gamma = id$.

Assume for a contradiction, Γ is not discrete. Therefore, we can find a sequence $\int \gamma_n \in \Gamma, n \geq 1$ $\gamma_n \to id$ (Without loss of generality) In particular, $\begin{cases} \gamma_n(z) \to z \text{ as } n \to \infty \end{cases}$ $\gamma_n(z) \neq z, n \geq 1$ Thus, $\forall \varepsilon > 0, \{ \gamma \in \Gamma \mid \gamma(z) \in \overline{B(z, \varepsilon)} \}$ is infinite.

47

 Ω

CONTRACTOR CONTRACTOR

Proposition 7

Let Γ be a subgroup of Möb(\mathbb{H}). Then Γ acts properly discontinuously on $\mathbb H$ if and only if for all $z \in \mathbb H$, $\Gamma(z)$, the orbit of z, is a discrete subset of \mathbb{H} .

Proof:

 (\Rightarrow) : Suppose Γ acts properly discontinuously on \mathbb{H} . Then Γ is a Fuchsian group, and hence $\Gamma(z)$ is a discrete subset of $H₁$.

 (\Leftarrow) : Prove by contradiction: Suppose Γ does not act properly discontinuously on H. Hence by the theorem, Γ is not discrete. Then using the previous sequence, we can see that the orbit of z. is not discrete.

Summary

Group action:

- 1. Discreteness: $d_{M\ddot{\sigma}b(\mathbb{H})}(\gamma_1, \gamma_2) > \delta > 0.$
- 2. Orbits: $\Gamma(z) = \{ \gamma \in \Gamma \mid \gamma(z) \}.$
- 3. Stabilizer: $\Gamma_z = \{ \gamma \in \Gamma \mid \gamma(z) = z \}.$
- 4. Properly discontinuous: $\forall z_0 \in \mathbb{H}$ and any compact set $K \subseteq \mathbb{H}$, the set $\{ \gamma \in \Gamma \mid \gamma(z_0) \in K \}$ is finite.

Fuchisan group:

- 1. is a discrete subgroup of $M\ddot{\mathrm{o}}b(\mathbb{H})$ or $M\ddot{\mathrm{o}}b(\mathbb{D})$.
- 2. identity element is isolated.
- 3. orbit is discrete subset of H.
- 4. acts properly discontinuously on H.

Outline

- 1. [Basics of group actions](#page-2-0)
- 2. [Fuchsian groups](#page-28-0)
- 3. [Fundamental domains](#page-51-0)
- 4. [Dirichlet polygons](#page-70-0)
- 5. [Reference](#page-88-0)

Open and closed subsets

Definition

A subset Y $\subset \mathbb{H}$ is said to be **open** if $\forall y \in Y, \exists \varepsilon > 0$ such that the open ball $B_{\varepsilon}(y) = \{z \in \mathbb{H} \mid d_{\mathbb{H}}(z, y) < \varepsilon\}$ of radius ε and centre y is contained in Y .

A subset $Y \subset \mathbb{H}$ is said to be **closed** if its complement $\mathbb{H} \setminus Y$ is open.

Examples:

- 1. The subset $\{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$ is open.
- 2. The subset $\{z \in \mathbb{H} \mid 0 \le Re(z) \le 1\}$ is closed.
- 3. The subset $\{z \in \mathbb{H} \mid 0 < Re(z) \leq 1\}$ is neither open nor closed.
- 4. The subset ∅ is both open and closed.

Open and closed subsets: Remark

Note that hyperbolic circles are Euclidean circles (albeit with different radii and centres).

Fact:

Let $C = \{w \in \mathbb{H} \mid d_{\mathbb{H}}(z, w) = r\}$ be a hyperbolic circle with centre $z \in \mathbb{H}$ and radius $r > 0$. Let $z = x_0 + iy_0$. Then C is a Euclidean circle with centre $(x_0, y_0 \cosh r)$ and radius $y_0\sqrt{\cosh^2 r-1} = y_0 \sinh r.$

Thus to prove a subset $Y \subset \mathbb{H}$ is open it is sufficient to find a Euclidean open ball around each point that is contained in Y .

In particular, the open subsets of H are the same as the open subsets of the (Euclidean) upper half-plane. $\frac{53}{2}$

KORKAR KERKER EL POLO

Closure

Definition

Let $Y \subset \mathbb{H}$ be a subset. Then the **closure** of Y is the smallest closed subset containing Y. We denote the closure of Y by $cl(Y).$

Example

The closure of
$$
\{z \in \mathbb{H} \mid 0 < Re(z) < 1\}
$$
 and $\{z \in \mathbb{H} \mid 0 < Re(z) \leq 1\}$ is $\{z \in \mathbb{H} \mid 0 \leq Re(z) \leq 1\}$.

Properties of closed sets:

- 1. Any intersection of closed sets is closed.
- 2. The union of finitely many closed sets is closed.

54

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

Fundamental domain

Definition

Let Γ be a Fuchsian group. A fundamental domain F for Γ is an open subset of H such that:

$$
{\rm (i)}\ \bigcup_{\gamma\in \Gamma}\gamma(cl(F))=\mathbb{H}
$$

(ii) the images $\gamma(F)$ are pairwise disjoint; that is, $\gamma_1(F) \cap \gamma_2(F) = \emptyset$ if $\gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$.

Remark

Since both γ and γ^{-1} are continuous maps, $\gamma(cl(F)) = cl(\gamma(F)).$ Thus F is a fundamental domain if every point lies in the closure of some image $\gamma(F)$ and if two distinct images do not overlap. We say that the images of F under Γ tessellate \mathbb{H} .

Example of Fuchsian group (I): Integer translations

The subgroup Γ of Möb(\mathbb{H}) given by integer translations: $\Gamma_n(z) = \{ \gamma_n \, | \, \gamma_n(z) = z + n, n \in \mathbb{Z} \}$ is a Fuchsian group.

Proof

Consider the set $F = \{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$. This is an open set. Clearly if $Re(z) = a$, then $Re(\gamma_n(z)) = n + a$. Hence

$$
\gamma_n(F) = \{ z \in \mathbb{H} \mid n < Re(z) < n+1 \}
$$

and

$$
\gamma_n(cl(F)) = \{ z \in \mathbb{H} \mid n \le Re(z) \le n+1 \}
$$

Hence $\mathbb{H} = \bigcup_{n \in \mathbb{Z}} \gamma_n(cl(F))$. It is also clear that if $\gamma_n(F)$ and $\gamma_m(F)$ intersect, then $n = m$. Hence F is a fundamental domain for Γ.

56

A fundamental domain and tessellation for $\Gamma = \{ \gamma_n \, | \, \gamma_n(z) = z + n \}$

 $Re(z) = -1$ $Re(z) = 0$ $Re(z) = 1$ $Re(z) = 2$

57

Example of Fuchsian group (II)

The subgroup $\Gamma = \{ \gamma_n \mid \gamma_n(z) = 2^n z, n \in \mathbb{Z} \}$ of Möb(\mathbb{H}) is a Fuchsian group.

Proof

Let $F = \{z \in \mathbb{H} \mid 1 < |z| < 2\}$. This is an open set. Clearly, if $1 < |z| < 2$ then $2^n < |\gamma_n(z)| < 2^{n+1}$. Hence

$$
\gamma_n(F) = \{ z \in \mathbb{H} \mid 2^n < |z| < 2^{n+1} \}
$$

and

$$
\gamma_n(cl(F)) = \{ z \in \mathbb{H} \, | \, 2^n \le |z| \le 2^{n+1} \}
$$

Hence $\mathbb{H} = \bigcup_{n \in \mathbb{Z}} \gamma_n(cl(F))$. It is also clear that if $\gamma_n(F)$ and $\gamma_m(F)$ intersect, then $n = m$. Hence F is a fundamental domain for Γ.

58

A fundamental domain and tessellation for $\Gamma = \{ \gamma_n \, | \, \gamma_n(z) = 2^n z \}$

59

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Uniqueness of Fundamental domains

Suppose $\Gamma = \{Id\}$, the trivial group containing just one element. In this case, $\mathbb H$ is the only fundamental domain for Γ . Now suppose $\Gamma \neq {\text{Id}}$. A fundamental domain is not uniquely determined by a non-trivial Fuchsian group: an arbitary small perturbation gives another fundamental domain.

60

 Ω

舌

Fundamental domains are not unique - continued

Let Γ be the cyclic group generated by the transformation $z \rightarrow 2z$. The fundamental domains for Γ are:

 299

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus$

Recall that: The boundary ∂F of a set F is defined to be the set $cl(F) \setminus int(F)$. Here $cl(F)$ is the closure of F and $int(F)$ is the interior of F.

Proposition

Let F_1 and F_2 be two fundamental domains for a Fuchsian group γ , with Area_H(F_1) < ∞. Assume that Area_H(∂F_1) = 0 and $Area_{\mathbb{H}}(\partial F_2) = 0$. Then $Area_{\mathbb{H}}(F_1) = Area_{\mathbb{H}}(F_2)$.

62

Proof of Proposition

Since Area $\text{H}(\partial F_i) = 0$, Area $\text{H}(cl(F_i)) = \text{Area}_{\text{H}}(F_i)$ $\forall i = 1, 2$ Hence, we have:

$$
cl(F_1) \supset cl(F_1) \cap (\bigcup_{\gamma \in \Gamma} \gamma(F_2)) = \bigcup_{\gamma \in \Gamma} (cl(F_1) \cap \gamma(F_2))
$$

As F_2 is a fundamental domain, the sets $cl(F_1) \cap \gamma(F_2)$ are pairwise disjoint.

Hence, using the facts that

- (i) the area of the union of disjoint sets is the sum of the areas of the sets,
- (ii) Möbius transformations of $\mathbb H$ preserve area.

Proof of Proposition - continued

We have:

$$
Area_{\mathbb{H}}(cl(F_1)) \ge \sum_{\gamma \in \Gamma} Area_{\mathbb{H}}(cl(F_1) \cap \gamma(F_2))
$$

=
$$
\sum_{\gamma \in \Gamma} Area_{\mathbb{H}}(\gamma^{-1}(cl(F_1)) \cap F_2)
$$

=
$$
\sum_{\gamma \in \Gamma} Area_{\mathbb{H}}(\gamma(cl(F_1)) \cap F_2)
$$

Since F_1 is a fundamental domain we have:

$$
\bigcup_{\gamma\in\Gamma}\gamma(cl(F_1))=\mathbb{H}
$$

64

KO K K @ K K 통 K K 통 K 및 K YO Q @

Proof of Proposition - continued

Hence

$$
\sum_{\gamma \in \Gamma} \text{Area}_{\mathbb{H}}(\gamma(cl(F_1)) \cap F_2) \ge \text{Area}_{\mathbb{H}}\left(\bigcup_{\gamma \in \Gamma} \gamma(cl(F_1)) \cap F_2\right)
$$

$$
= \text{Area}_{\mathbb{H}}(F_2)
$$

Hence

$$
\text{Area}_{\mathbb{H}}(F_1) = \text{Area}_{\mathbb{H}}(cl(F_1)) \ge \text{Area}_{\mathbb{H}}(F_2)
$$

Interchanging F_1 and F_2 in the above gives the reverse inequality.

$$
\text{Area}_{\mathbb{H}}(F_2) = \text{Area}_{\mathbb{H}}(cl(F_2)) \ge \text{Area}_{\mathbb{H}}(F_1)
$$

Hence $Area_{\mathbb{H}}(F_1) = Area_{\mathbb{H}}(F_2)$.

65

Points to note

The area of a fundamental region, if it is finite, is a numerical invariant of the group.

Integer translations are examples of a Fuchsian group with a fundamental domain of infinite area.

$$
\gamma_{-1}(F)
$$
 F $\gamma_1(F)$ $\gamma_2(F)$
 $\gamma_{-1}(F)$ $\gamma_2(F)$
 $\gamma_1(F)$ $\gamma_2(F)$
 $\gamma_2(F)$ $\gamma_1(F)$ $\gamma_2(F)$

66

A Fuchsian group and its subgroup

Let Γ be a Fuchsian group and let $\Gamma_1 < \Gamma$ be a subgroup of Γ . Then Γ_1 is a discrete subgroup of the Möbius group Möb (\mathbb{H}) and so is itself a Fuchsian group.

Definition

Let G be a group. A subset H of G is a **subgroup** of G if it satisfies the following properties:

- Closure: If $a, b \in H$, then $ab \in H$.
- Identity: The identity element of G lies in H.
- Inverses: If $a \in H$, then $a^{-1} \in H$.

Definition

The **index** of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G.

A Fuchsian group and its subgroup

Proposition

Let Γ be a Fuchsian group and suppose that Γ_1 is a subgroup of Γ of index n. Let

$$
\Gamma = \Gamma_1 \gamma_1 \cup \Gamma_1 \gamma_2 \cup \cdots \cup \Gamma_1 \gamma_n
$$

be a decomposition of Γ into cosets of Γ_1 . Let F be a fundamental domain for Γ. Then:

- (i) $F_1 = \gamma_1(F) \cup \gamma_2(F) \cup \cdots \cup \gamma_n(F)$ is a fundamental domain for Γ_1 :
- (ii) if $Area_{\mathbb{H}}(F)$ is finite then $Area_{\mathbb{H}}(F_1) = nArea_{\mathbb{H}}(F)$.

68

Summary: Fundamental domains

- 1. A Fuchsian group is a discrete subgroup of the group $M\ddot{\mathrm{o}}b(\mathbb{H})$ of all Möbius transformations of \mathbb{H} .
- 2. A subset $F \subset \mathbb{H}$ is a fundamental domain if, essentially, the images $\gamma(F)$ of F under the Möbius transformations $\gamma \in \Gamma$ tessellate (or tile) the upper half-plane H.
- 3. The set $\{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$ is a fundamental domain for the group of integer translations $\{\gamma_n(z) = z + n \mid n \in \mathbb{Z}\}\$

Outline

- 1. [Basics of group actions](#page-2-0)
- 2. [Fuchsian groups](#page-28-0)
- 3. [Fundamental domains](#page-51-0)
- 4. [Dirichlet polygons](#page-70-0)
- 5. [Reference](#page-88-0)

Introduction to Dirichlet polygon

Each Fuchsian group possesses a fundamental domain. The purpose of the following slides is to give a method for constructing a fundamental domain for a given Fuchsian group. The fundamental domain that we construct is called a Dirichlet polygon.

There are other methods for constructing fundamental domains that, in general, give different fundamental domains than a Dirichlet polygon; such an example is the Ford fundamental domain.

The construction given below is written in terms of the upper half-plane $\mathbb H$. The same construction works in the Poincaré disc \mathbb{D} . \blacksquare

KORKAR KERKER EL POLO
Dirichlet polygon

Definition

Let C be a geodesic in \mathbb{H} . Then C divides \mathbb{H} into two components. These components are called half-planes.

Example 1: The imaginary axis determines two half-planes: ${z \in \mathbb{H} \mid Re(z) < 0}$ and ${z \in \mathbb{H} \mid Re(z) > 0}$.

Example 2:

The geodesic given by the semi-circle of unit radius centred at the origin also determines two half-planes (although they no longer look like Euclidean half-planes): $\{z \in \mathbb{H} \mid |z| < 1\}$ and ${z \in \mathbb{H} \mid |z| > 1}.$

KORKA SERKER ORA

Convex hyperbolic polygon

Definition

A convex hyperbolic polygon is the intersection of a finite number of halfplanes.

It is possible that an edge of a hyperbolic polygon to be an arc of the circle at infinity. For example, a polygon with one edge on the boundary (i) in the upper half-plane, and (ii) in the Poincaré disc.

Perpendicular bisectors

Let $z_1, z_2 \in \mathbb{H}$. Recall that $[z_1, z_2]$ is the segment of the unique geodesic from z_1 to z_2 . The perpendicular bisector of $[z_1, z_2]$ is defined to be the unique geodesic perpendicular to $[z_1, z_2]$ that passes through the midpoint of $[z_1, z_2]$.

 $2Q$

Perpendicular bisectors: Proposition

Proposition

Let $z_1, z_2 \in \mathbb{H}$. The set of points $\{z \in \mathbb{H} \mid d_{\mathbb{H}}(z, z_1) = d_{\mathbb{H}}(z, z_2)\}\$ that are equidistant from z_1 and z_2 is the perpendicular bisector of the line segment $[z_1, z_2]$.

Proof

Without loss of generality (by applying a Möbius isometry, if necessary), we can write:

$$
\begin{cases} z_1 = i \\ z_2 = ir^2 \ (r > 1) \end{cases}
$$

There is no loss in generality to assume that $r > 1$, since we can apply the Möbius transformation $z \mapsto -\frac{1}{z}$, if required.

75

Proof of proposition - continued

Recall that:

Let $a \leq b$. Then the hyperbolic distance between ia and ib is $log\frac{b}{a}$. Moreover, the vertical line joining *ia* to *ib* is the unique path between *ia* and *ib* with length $log\frac{b}{a}$; any other path from *ia* to *ib* has length strictly greater than $log\frac{b}{a}$.

Using the above fact, it follows that the mid-point of $[i, ir^2]$ is at the point ir. It is clear that the unique geodesic through ir that meets the imaginary axis at right-angles is given by the semi-circle of radius r centred at 0.

Proof of proposition - continued

Recall that:

$$
\cosh d_{\mathbb{H}}(z,w) = 1 + \frac{|z-w|^2}{2\operatorname{Im} z \operatorname{Im} w}
$$

In our setting this implies that:

$$
|z - i|^2 = \frac{|z - ir^2|^2}{r^2}
$$

This simplifies to $|z|=r$, i.e. z lies on the semicircle of radius r, centred at 0.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Example

Let $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$, $z_1, z_2 \in \mathbb{H}$. Show that the perpendicular bisector of $[z_1, z_2]$ can also be written as ${z \in \mathbb{H} \mid y_2 | z - z_1 |^2 = y_1 | z - z_2 |^2}.$

Solution:

By the previous Proposition, $z \in \mathbb{H}$ is on the perpendicular bisector of $[z_1, z_2]$ if and only if $d_{\mathbb{H}}(z, z_1) = d_{\mathbb{H}}(z, z_2)$. Note that:

$$
d_{\mathbb{H}}(z, z_1) = d_{\mathbb{H}}(z, z_2)
$$

\n
$$
\cosh d_{\mathbb{H}}(z, z_1) = \cosh d_{\mathbb{H}}(z, z_2)
$$

\n
$$
1 + \frac{|z - z_1|^2}{2y_1 \text{Im}(z)} = 1 + \frac{|z - z_2|^2}{2y_2 \text{Im}(z)}
$$

\n
$$
y_2 |z - z_1|^2 = y_1 |z - z_2|^2
$$

78

KORKA SERKER ORA

Tools for Dirichlet polygon

Theorem

Let Γ be a non-trivial Fuchsian group. Then there exists a point $p \in \mathbb{H}$ that is not a fixed point for any non-trivial element of Γ. (That is, $\gamma(p) \neq p$ for all $\gamma \in \Gamma \setminus \{Id\}$.)

Tools for Dirichlet polygon - continued

Definition: Let Γ be a Fuchsian group and let $p \in \mathbb{H}$ be a point such that $\gamma(p) \neq p$ for all $\gamma \in \Gamma \setminus \{Id\}$. Let γ be an element of Γ and suppose that γ is not the identity. The set

$$
\{z\in\mathbb{H}\,|\,d_{\mathbb{H}}(z,p)
$$

consists of all points $z \in \mathbb{H}$ that are closer to p than to $\gamma(p)$.

Definition: We define the Dirichlet region to be:

$$
D(p) = \{ z \in \mathbb{H} \mid d_{\mathbb{H}}(z, p) < d_{\mathbb{H}}(z, \gamma(p)) \text{ for all } \gamma \in \Gamma \setminus \{ \text{Id} \} \}
$$

Thus the Dirichlet region is the set of all points z that are closer to p than to any other point in the orbit $\Gamma(p) = {\gamma(p) | \gamma \in \Gamma}$ of p under Γ .

Tools for Dirichlet polygon - continued

Fact: Let Γ be a Fuchsian group and let p be a point not fixed by any non-trivial element of Γ. Then the Dirichlet region $D(p)$ is a fundamental domain for Γ. Moreover, if $Area_{\mathbb{H}}(D(p)) < \infty$ then $D(p)$ is a convex hyperbolic polygon; in particular it has finitely many edges.

Remark 1: There are many other hypotheses that ensure that $D(p)$ is a convex hyperbolic polygon with finitely many edges; requiring $D(p)$ to have finite hyperbolic area is probably the simplest. Fuchsian groups that have a convex hyperbolic polygon with finitely many edges as a Dirichlet region are called geometrically finite.

KORKAR KERKER EL POLO

Remark 2: If $D(p)$ has finitely many edges then we refer to $D(p)$ as a Dirichlet polygon. Notice that some of these edges may be arcs of ∂H. If there are finitely many edges then there are also finitely many vertices (some of which may be on $\partial \mathbb{H}$).

Remark 3: The Dirichlet polygon $D(p)$ depends on p. If we choose a different point p , then we may obtain a different polygon with different properties, such as the number of edges.

KORKAR KERKER EL POLO

Summary: procedure to construct a Dirichlet polygon for a given Fuchsian group

- 1. Choose $p \in \mathbb{H}$ such that $\gamma(p) \neq p$, $\forall \gamma \in \Gamma \setminus \{id\}.$
- 2. Let $\gamma \in \Gamma \setminus \{id\}$. Construct the geodesic segment $[p, \gamma(p)]$.
- 3. Let $L_p(\gamma)$ denote the perpendicular bisector of $[p, \gamma(p)]$.
- 4. Let $H_p(\gamma)$ denote the half-plane determined by $L_p(\gamma)$ that contains p.
- 5. Let

$$
D(p) = \bigcap_{\gamma \in \Gamma \setminus \{id\}} H_p(\gamma)
$$

83

Example (I): The group of all integer translations

Let Γ be the Fuchsian group $\{\gamma_n | \gamma_n(z) = z + n, n \in \mathbb{Z}\}\.$ Then $D(i) = \{z \in \mathbb{H} \mid -\frac{1}{2} < Re(z) < \frac{1}{2}\}$ $\frac{1}{2}$.

Solution:

Let $p = i$. Then clearly $\gamma_n(p) = i + n \neq p$ so that p is not fixed by any non-trivial element of Γ. As $\gamma_n(p) = i + n$, it is clear that the perpendicular bisector of $[p, \gamma_n(p)]$ is the vertical straight line with real part $\frac{n}{2}$. Hence,

$$
H_p(\gamma_n) = \begin{cases} \{z \in \mathbb{H} \,|\, Re(z) < n/2\} & \text{if } n > 0 \\ \{z \in \mathbb{H} \,|\, Re(z) > n/2\} & \text{if } n < 0 \end{cases}
$$

84

KORK EXTERNED ARA

Example (I) - continued

Hence,

$$
D(p) = \bigcap_{\gamma \in \Gamma \setminus \{\text{Id}\}} H_p(\gamma)
$$

= $H_p(\gamma_1) \cap H_p(\gamma_{-1})$
= $\{z \in \mathbb{H} | -1/2 < Re(z) < 1/2\}$

85

Example (II)

Let $= \{ \gamma_n | \gamma_n(z) = 2^n z, n \in \mathbb{Z} \}.$ This is a Fuchsian group. Choose a suitable $p \in \mathbb{H}$ and construct a Dirichlet polygon $D(p)$.

Solution: Let $\Gamma = \{ \gamma_n \mid \gamma_n(z) = 2^n z \}.$ Let $p = i$ and note that $\gamma_n(p) = 2^n i \neq p$ unless $n = 0$. For each $n, [p, \gamma_n(p)]$ is the arc of imaginary axis from *i* to $2^n i$. Suppose first that $n > 0$. Recalling that for $a < b$ we have $d_{\mathbb{H}}(ai, bi) = log b/a$ it is easy to see that the midpoint of $[i, 2^n i]$ is at $2^{n/2}i$.

KORKAR KERKER DRAG

Proof - continued

Hence, $L_p(\gamma_n)$ is the semicircle of radius $2^{n/2}$ centred at the origin and

$$
H_p(\gamma_n) = \{ z \in \mathbb{H} \, | \, |z| < 2^{n/2} \}
$$

For $n < 0$, we can see that

$$
H_p(\gamma_n) = \{ z \in \mathbb{H} \, | \, |z| > 2^{n/2} \}
$$

Hence,

$$
D(p) = \bigcap_{\gamma_n \in \Gamma \backslash \{\text{Id}\}} H_p(\gamma_n)
$$

= $\{z \in \mathbb{H} \mid 1/\sqrt{2} < |z| < \sqrt{2}\}$

87

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Outline

- 1. [Basics of group actions](#page-2-0)
- 2. [Fuchsian groups](#page-28-0)
- 3. [Fundamental domains](#page-51-0)
- 4. [Dirichlet polygons](#page-70-0)
- 5. [Reference](#page-88-0)

Reference

- 1. Hyperbolic geometry, by James W. Anderson, Springer, 1999
- 2. Lecture notes by C. Walkden
- 3. Lecture notes by C. Series
- 4. Fuchsican Groups, by Svetlana Katok, Chicago Lectures in Mathematics, 1992
- 5. Notes by Pollicott
- 6. https://en.wikipedia.org/wiki/Group action

7.

https://proofwiki.org/wiki/Definition:Orbit (Group Theory)

8. https://proofwiki.org/wiki/Definition:Stabilizer

89

KORKAR KERKER EL POLO

Reference

- 9. https://en.wikipedia.org/wiki/Fuchsian group
- 10. https://mathworld.wolfram.com/GroupAction.html
- 11. https://encyclopediaofmath.org/wiki/Fuchsian group
- 12.

https://proofwiki.org/wiki/Identity Mapping is Homeomorphism