Basics of group actions and Fuchsian groups; Fundamental domains; Dirichlet polygons

Hui Kam Tong, Cheng Ka Long 1155109049, 1155109623 Course Teacher: Prof. Yi-Jen LEE

Department of Mathematics, The Chinese University of Hong Kong

MATH4900E Presentation 6, 9th November 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- 1. Basics of group actions
- 2. Fuchsian groups
- 3. Fundamental domains

1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- 4. Dirichlet polygons
- 5. Reference

Outline

- 1. Basics of group actions
- 2. Fuchsian groups
- 3. Fundamental domains
- 4. Dirichlet polygons
- 5. Reference

Group actions:

A group homomorphism of a given group into the group of transformations of the space.

Definition (Left action)

A group G is said to act on a set X when there is a map $\zeta: G \times X \to X$ such that the following conditions hold for all elements $x \in X$:

1. $\zeta(id, x) = x$ where *id* is the identity element of *G*.

2. $\zeta(g,\zeta(h,x)) = \zeta(gh,x)$ for all $g,h \in G$.

Here, G is called a transformation group, ζ is called the group action.

Type of group actions:

In topological space X, there are four actions of G:

1. Wandering

If any $x \in X$ has a neighbourhood U such that $\{ g \in G \mid g \cap U \neq \emptyset \}$ is finite.

- 2. Properly discontinuously
- 3. Proper

If G is a topological group and the map from $G \times X \to X \times X : (g, x) \mapsto (g \cdot x, x)$ is proper.

4. Covering space action If any $x \in X$ has a neighbourhood U such that $\{ g \in G \mid g \cdot U \cap U \neq \emptyset \} = \{id\}$

4

Preliminaries on group actions:

5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- 1. Discreteness
- 2. Orbits
- 3. Stabilizer

Recall:

 $M\ddot{o}b(\mathbb{H})$ and $M\ddot{o}b(\mathbb{D})$ are groups (which are under composition). The collection of those Möbius transformations form a group.

General linear group: $GL(2, \mathbb{R})$

Special linear group: $SL(2, \mathbb{R})$

Projective special linear group: $PSL(2, \mathbb{R})$

 $\{a, b, c, d \in \mathbb{R} \}$

6

Recall: $\text{M\"ob}(\mathbb{H}) := \{ \gamma : z \mapsto \frac{az+b}{cz+d} \mid ad - bc = 1, a, b, c, d \in \mathbb{R} \} \text{ satisfies:}$ (a) Each $\gamma \in \text{M\"ob}(\mathbb{H})$ is an isometry. $(d_{\mathbb{H}}(\gamma(z_1), \gamma(z_2)) = d_{\mathbb{H}}(z_1, z_2))$

7

Discreteness is important in geometry, topology and metric spaces.

Metric space

A mathematical space on which it is possible to define the distance between two points in the space.

8

うして ふゆ く は く は く む く し く

Let d(x, y) be the distance between from x to y.

1:
$$d(x, y) > 0$$
 if $x \neq y$; $d(x, x) = 0$
2: $d(x, y) = d(y, x)$
3: $d(x, y) \leq d(x, z) + d(z, y)$

Examples of metric spaces:

i. \mathbb{R}^n with the Euclidean metric

$$d((x_1, ..., x_n), (y_1, ..., y_n))$$

$$= ||(x_1, ..., x_n) - (y_1, ..., y_n)||$$

$$= \sqrt{|x_1 - y_1|^2 + \dots + |x_n - y_n|^2}$$

ii. the upper half-plane \mathbb{H} with the metric $d_{\mathbb{H}}$ that we defined in our last presentation, i.e.

$$\begin{split} d_{\mathbb{H}}(z,z') &= \inf\{ \ \text{length}_{\mathbb{H}}(\sigma) \mid \sigma \text{ is a piecewise} \\ & \text{continuously differentiable path} \\ & \text{with end-points } z \text{ and } z' \rbrace \end{split}$$

Metric space

Let (X, d) be a metric space. A subset $Y \subset X$ is discrete if every point $y \in Y$ is isolated.

Definition

A point $y \in Y$ is isolated if there exist $\delta > 0$ such that if $y' \in Y$ and $y' \neq y$, then $d(y, y') > \delta$.

Examples:

- 1. In any metric space, a single point $\{x\}$ is discrete.
- 2. The set of rationals \mathbb{Q} is not a discrete subgroup of \mathbb{R} since there are infinitely many distinct rationals arbitrarily close to any given rational.

Two Möbius transformations of \mathbb{H} are close if the coefficients (a, b, c, d) defining them are close.

But different coefficients (a, b, c, d) can give the same Möbius transformations.

Recall:

Möbius transformation $\gamma(z) = \frac{az+b}{cz+d}$ is normalised if ad - bc = 1. But, if $\gamma(z) = \frac{az+b}{cz+d}$ is normalised, then $\gamma(z) = \frac{-az-b}{-cz-d}$ is also normalised.

12

The normalised Möbius transformations of $\mathbb H$ given by

$$\gamma_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}$$

and

$$\gamma_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2}$$

If either (a_1, b_1, c_1, d_1) and (a_2, b_2, c_2, d_2) are close or (a_1, b_1, c_1, d_1) and $(-a_2, -b_2, -c_2, -d_2)$ are close, then $\gamma_1(z)$ and $\gamma_2(z)$ are close.

13

うしゃ ふゆ きょう きょう うくの

Formula:

$$d_{\text{M\"ob}}(\gamma_1, \gamma_2) = \min\{||(a_1, b_1, c_1, d_1) - (a_2, b_2, c_2, d_2)||, \\ ||(a_1, b_1, c_1, d_1) - (-a_2, -b_2, -c_2, -d_2)||\}$$

Think of Möbius transformations of $\mathbb H$ being close if they 'look close'.

14

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Same as Möbius transformations of \mathbb{D} .

Definition Let X be a subset of $M\"ob(\mathbb{H})$.

Then $\gamma \in X$ is isolated if there exist $\delta > 0$ such that $\forall \gamma' \in X - \{\gamma\}$, we have $d_{M\"ob}(y, y') > \delta$.

We say that a subset $X \subset \text{M\"ob}(\mathbb{H})$ is discrete if every $\gamma \in X$ is isolated.

Remark:

We could equally well work with isometries of $(\mathbb{D}, d_{\mathbb{D}})$ or any other model of hyperbolic space.

15

Definition

A subgroup $G \subset SL(2, \mathbb{R})$ is a discrete group if G has no accumulation points in $SL(2,\mathbb{R})$.

Accumulation points

x is said to be an accumulation point in A if every open set containing x contains at least one other point from A.

Definition

A subset Z of \mathbb{H} is discrete if for each $z \in Z$, there exists some $\varepsilon > 0$ so that $B(z, \varepsilon) \bigcap Z = \{z\}$, where

$$B(z, \ \varepsilon) = \{ w \in \mathbb{H} \ | \ d_{\mathbb{H}}(z, \ w) < \varepsilon \}$$

is the open hyperbolic disc with hyperbolic centre z and hyperbolic radius ε .

That is same as each point of Z can be isolated from all the other points of Z.

Let Γ be a subgroup of $M\ddot{o}b(\mathbb{H})$, and suppose Γ is not discrete. That is, there is some $z \in \mathbb{H}$ so that the set $\Gamma(z)$ is not a discrete subset of \mathbb{H} .

By the definition of discreteness, there exists an element $\gamma(z)$ of $\Gamma(z)$ so that for each $\varepsilon > 0$, the set $\Gamma \bigcap B(\gamma(z), \varepsilon)$ contains a point other than $\gamma(z)$.

For each $n \in \mathbb{N}$, choose an element γ_n of Γ so that $\gamma_n(z) \neq \gamma(z)$ and so that

$$\gamma_n(z) \in \Gamma(z) \bigcap B(\gamma(z), \frac{1}{n}).$$

As $n \to \infty$, we have that $d_{\mathbb{H}}(\gamma(z), \gamma_n(z)) \to 0$. Pass to a subsequence of $\{\gamma_n\}$, called $\{\gamma_n\}$ to avoid the proliferation of subscripts, so that the $\gamma_n(z)$ are distinct. We now have a sequence $\{\gamma_n\}$ of distinct elements of Γ so that $\{\gamma_n\}$ converges to $\gamma(z)$.

Lemma 1

Let Γ be a subgroup of $\text{M\"ob}(\mathbb{H})$. Γ contains a sequence of distinct elements converging to an element μ of $\text{M\"ob}(\mathbb{H})$ if and only if Γ contains a sequence of distinct elements converging to the identity.

Proposition 1

Let Γ be a discrete subgroup of $M\ddot{o}b(\mathbb{H})$. If X is a subgroup of Γ , then X is discrete.

Conversely, there are a few special cases in which the discreteness of a subgroup of Γ implies the discreteness of Γ . We begin considering subgroups of $\text{M\"ob}^+(\mathbb{H})$ with discrete normal subgroups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition 2

Let Γ be a discrete subgroup of $\text{M\"ob}^+(\mathbb{H})$ and let X be a non-trivial normal subgroup of Γ . If X is discrete, then Γ is discrete.

Proof:

To prove this proposition, we will use the contrapositive.

Suppose that Γ is not discrete and let $\{\gamma_n\}$ be a sequence of distinct elements of Γ coverging to the identity.

Choose some element μ of X, other than the identity, and consider the sequence $\{\gamma_n^{-1} \circ \mu \circ \gamma_n\}$.

Observe that $\{\gamma_n^{-1} \circ \mu \circ \gamma_n\}$ is a sequence of elements of X.

Since $\{\gamma_n\}$ converges to the identity, we have that $\{\gamma_n^{-1}\}$ converges to the identity as well, and so $\{\gamma_n^{-1} \circ \mu \circ \gamma_n\}$ converges to μ .

Then since γ_n are distinct and are converging to the identity, $\gamma_n^{-1} \circ \mu \circ \gamma_n$ are distinct.

Therefore, X is not discrete.

Proposition 3

Let Γ be a subgroup of $\text{M\"ob}(\mathbb{H})$, and let X be a finite index subgroup of Γ . If X is discrete, then Γ is discrete.

Proof: First, we need to express Γ as a coset decomposition with respect to X, that is:

$$\Gamma = \bigcup_{k=0}^{p} \alpha_k X,$$

where $\alpha_0, \cdots, \alpha_p$ are elements of Γ .

Suppose that Γ is not discrete, and let $\{\gamma_n\}$ be a sequence of distinct elements of Γ converging to the identity.

For *n*, we can write $\gamma_n = \alpha_{k_n} \mu_n$, where $0 \le k_n \le p$ and $\mu_n \in X$. Since there are infinitely many elements in the sequence, there is some fixed *q* satisfying $0 \le q \le p$, so that $k_n = q$ for infinitely many *n*.

So, consider the subsequence $\{\gamma = \alpha_q \mu_m\}$ consisting of those elements of the sequence for which $k_n = q$.

Since $\{\gamma_m\}$ converges to the identity, we have that $\{\alpha_q \mu_m\}$ converges to the identity as well. Hence, we have that $\{\mu_m\}$ converges to α_q^{-1} .

By the lemma, X is not discrete, a contradiction.

Orbits

Let Γ be a discrete subgroup of $\text{M\"ob}(\mathbb{H})$.

Definition

Let $z \in \mathbb{H}$. The orbit $\Gamma(z)$ of z under Γ is the set of all points of \mathbb{H} that we can reach by applying elements of Γ to z:

$$\Gamma(z) := \{ \gamma(z) \mid \gamma \in \Gamma \}.$$

Orbits

Example:

Let $\Gamma(z) = \{\gamma(z) = \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1\}.$ Let z=i, then we have,

$$\Gamma(i) = \{\frac{ai+b}{ci+d} \mid a, b, c, d \in \mathbb{Z}, ad-bc = 1\}$$

Example:

Let $\Gamma(z) = \{\gamma(z) = \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1\}$. Let $z = 0 \in \partial \mathbb{H}$, then we have,

$$\Gamma(0) = \{ \frac{b}{d} \mid ad - bc = 1 \}$$
$$= \mathbb{Q} \cup \{\infty\}.$$

An irrational point on \mathbb{R} can always be arbitrarily well approximated by rationals.

25

Stabilizer

Definition Let $z \in \mathbb{H}$. The stabilizer Γ_z of z under Γ is defined as:

$$\Gamma_z := \{ \gamma \in \Gamma \mid \gamma(z) = z \}.$$

Theorem

Let Γ be a subgroup of $\mathrm{M\ddot{o}b}(\mathbb{H}).$ If Γ is discrete, then the stabilizer

$$\Gamma_z := \{ \gamma \in \Gamma \mid \gamma(z) = z \}.$$

is finite for every $z \in \mathbb{H}$.

But, the converse of this theorem does not hold.

26

Stabilizer

Proof by using an example:

Consider the subgroup

$$\Gamma = \{m_{\lambda}(z) = \lambda z \mid \lambda > 0\}$$

of $M\ddot{o}b(\mathbb{H})$.

Then Γ is not a discrete subgroup of $M\"ob(\mathbb{H})$.

However, the stabilizer Γ_z is trivial for every $z \in \mathbb{H}$.

27

うしゃ ふゆ きょう きょう うくの

Outline

- 1. Basics of group actions
- 2. Fuchsian groups
- 3. Fundamental domains
- 4. Dirichlet polygons
- 5. Reference

Definition

A Fuchsian group is a discrete subgroup of either $M\ddot{o}b(\mathbb{H})$ or $M\"ob(\mathbb{D}).$

Examples.

- 1. Any finite subgroup of $M\ddot{o}b(\mathbb{H})$ or $M\ddot{o}b(\mathbb{D})$ is a Fuchsian group because any finite subset of any metric space is discrete.
- 2. As a specific example in the upper half-plane, let

$$\gamma_{\theta}(z) = \frac{\cos(\theta/2)z + \sin(\theta/2)}{-\sin(\theta/2)z + \cos(\theta/2)}$$

be a rotation around i.

Let $q \in \mathbb{N}$. Then $\{\gamma_{2\pi i/q} \mid 0 \leq j \leq q-1\}$ is a finite subgroup.

3. The subgroup of integer translations

 $\{\gamma_n(z) = z + n \mid n \in \mathbb{Z}\}\$ is a Fuchsian group. The subgroup of all translations $\{\gamma_b(z) = z + b \mid b \in \mathbb{R}\}\$ is not a Fuchsian group as it is not discrete.

- 4. The subgroup $\Gamma = \{\gamma_n(z) = 2^n z \mid n \in \mathbb{Z}\}$ is a Fuchsian group.
- 5. The subgroup $\Gamma = \{id\}$ containing only the identity Möbius transformation is a Fuchsian group. We call it the trivial Fuchsian group.
- 6. If Γ is a Fuchsian group and $\Gamma_1 < \Gamma$ is a subgroup, then Γ_1 is a Fuchsian group.

7. One of the most important Fuchsian groups is the modular group $PSL(2, \mathbb{Z})$. This is the group given by Möbius transformations of \mathbb{H} of the form

$$\gamma(z) = \frac{az+b}{cz+d}, \ a, \ b, \ c, \ d \in \mathbb{Z}, \ ad-bc = 1$$

8. Let $q \in \mathbb{N}$. Define

$$\Gamma_q = \{ \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad-bc = 1, b, c \text{ are divisible by } q \}.$$

This is called the level q modular group or the congruence subgroup of order q.

31

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Example (3):
Let
$$\gamma(z) = z + n$$
. Then $\Gamma = \{..., \gamma^{-1}, id, \gamma, \gamma^2, ...\}$

Note that $\gamma^a(z) = z + an$ and $\gamma^b(z) = z + bn$ for $a, b \in \mathbb{Z}$ for $a \neq b$,

$$\gamma^a(z) = \frac{(1)z + an}{(0)z + 1}$$

and

$$\gamma^b(z) = \frac{(1)z + bn}{(0)z + 1}$$

Thus
$$d_{\text{M\"ob}}(\gamma^a, \gamma^b) = \min\{|an - bn|, |an + bn|\}$$

$$\geq \frac{|n|}{2} > 0, \text{ for } a \neq b$$
32

Example (7): Let $\Gamma = \{ \gamma(z) = \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}$ First, need to prove it is a group. Let

$$\gamma_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}$$
, $a_1, b_1, c_1, d_1 \in \mathbb{Z}$, $a_1 d_1 - b_1 c_1 = 1$

and

$$\gamma_2(z) = \frac{a_2 z + b_2}{c_2 z + d_2}, \ a_2, b_2, c_2, d_2 \in \mathbb{Z}, \ a_2 d_2 - b_2 c_2 = 1$$

Thus $d_{M\ddot{o}b}(\gamma_1, \gamma_2) \ge 1 > 0$ Therefore Γ is a Fuchsian group.

33

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition 4

Let Γ be a subgroup of $M\ddot{o}b(\mathbb{H})$. The following are equivalent:

- i. Γ is a discrete subgroup of $M\ddot{o}b(\mathbb{H})$ (i.e. Γ is a Fuchsian group);
- ii. the identity element of Γ is isolated.

Proof:

 $i \Rightarrow ii$: is trivial from the definition. ii \Rightarrow i: Given $\gamma \in \Gamma$, we can consider the continuous map:

$$\begin{cases} \mathbf{B}_{\mathrm{M\"ob}}(\gamma, \ \varepsilon) & \xrightarrow{f} f(\mathbf{B}_{\mathrm{M\"ob}}(\gamma, \ \varepsilon)) \subseteq \mathrm{M\"ob}(\mathbb{H}) \\ \gamma' & \longmapsto^{f} \gamma^{-1}\gamma' \text{ (Multiply by } \gamma^{-1}) \end{cases}$$

where $B_{\text{M\"ob}}(\gamma, \varepsilon) = \{\gamma' \mid d_{\text{M\"ob}}(\gamma, \gamma') < \varepsilon\}$ for some $\varepsilon > 0$. ・ロト ・ 母 ト ・ 目 ト ・ 目 ・ うへぐ

Since *id* is isolated, we can choose $\delta > 0$ with $B_{M\ddot{o}b}(id, \delta) \cap \Gamma = \{id\}.$

Since f is a homeomorphism onto its image and $f(\gamma) = id$, then we can choose $\varepsilon > 0$ which is small enough that $f(\mathbf{B}(\gamma, \varepsilon)) \subset \mathbf{B}(id, \delta)$

Then, since $f(\mathbf{B}(\gamma, \varepsilon)) \cap \Gamma = \{id\}$, therefore $\mathbf{B}(\gamma, \varepsilon) \cap \Gamma = \{\gamma\}$
Fuchsian groups

Theorem (Jørgensen's inequality)

Let $\Gamma \subseteq \text{M\"ob}(\mathbb{H})$ be generated by two elements $\gamma_1, \gamma_2 \in \text{M\"ob}(\mathbb{H})$. A necessary condition for Γ to be Fuchsian is that

$$\max\{||\gamma_1 - id||, \ ||\gamma_2 - id||\} > \frac{7}{50}$$

Refer to The Geometry of Discrete Groups, P. 107.

Theorem (Shimizu's Lemma)

If Γ is a Fuchsian group and $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma$, then for any $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, we have either c = 0 or $|c| \ge 1$.

36

Proposition 5

Let Γ be a subgroup of $M\"{o}b(\mathbb{H})$. Then the following are equivalent:

- i. Γ is a Fuchsian group;
- ii. For each $z \in \mathbb{H}$, the orbit $\Gamma(z)$ is a discrete subset of \mathbb{H} .

Suppose this statement holds in the case of \mathbb{D} .

Fuchsian groups

Example:

Let $\Gamma = \{\gamma_n \mid \gamma_n(z) = 2^n z, n \in \mathbb{Z}\}$. Fix $z \in \mathbb{H}$. Then the orbit of z is

 $\Gamma(z) = \{2^n z \mid n \in \mathbb{Z}\}.$

Observe that the points $2^n z$ lie on the (Euclidean) straight line through the origin inclined at angle arg(z). Fix $2^n z$ and let $\delta = 2^{n-1}|z|$. Then, $|2^m z - 2^n z| \ge \delta$ whenever $m \ne n$. Hence $\Gamma(z)$ is discrete.

38

Fuchsian groups

Example:

Fix $k > 0, \ k \neq 1$. Consider the subgroup of Möb(\mathbb{H}) generated by the Möbius transformations of \mathbb{H} given by

$$\gamma_1(z) = z + 1, \ \gamma_2(z) = kz.$$

First consider the orbit $\Gamma(i)$ of i. Assume that k > 1, then observe that

$$\gamma_2^{-n}\gamma_1^m\gamma_2^n(i) = i + \frac{m}{k^n}$$

Assume that 0 < k < 1, then observe that

$$\gamma_2^n \gamma_1^m \gamma_2^{-n}(i) = i + mk^n.$$

Choose an arbitrarily large n. Then *i* is not an isolated point of the orbit $\Gamma(i)$. Hence $\Gamma(i)$ is not discrete.

Definition

The group Γ acts properly discontinuously on \mathbb{H} if $\forall z_0 \in \mathbb{H}$ and any compact set $K \subseteq \mathbb{H}$, the set $\{ \gamma \in \Gamma \mid \gamma(z_0) \in K \}$ is finite.

Note that we could replace K by closed ball which is:

$$\overline{\mathbf{B}(p, r)} = \{ z \in \mathbb{H} \mid \mathbf{d}(p, z) \le r \}$$

for any $\varepsilon > 0$.

40

Lemma 2

Let $\Gamma \subseteq \text{M\"ob}(\mathbb{H})$ be a subgroup acting properly discontinuously on \mathbb{H} .

Let $z_0 \in \mathbb{H}$ be fixed by $\gamma_0 \in \Gamma$. $(\gamma_0(z_0) = z_0)$

Then \exists neighbourhood $W \ni z_0$ such that no other point in W is fixed by a non-identity element of Γ .

Proof by contradiction:

Assume for a contradiction
$$\begin{cases} z_n & \to z_0 \ (n \ge 1) \\ \exists \gamma_n & \in \Gamma - \{e\}, \ \gamma_n(z_n) = z_n \end{cases}$$

Therefore, $\forall \varepsilon > 0$, $\exists N_1$ such that $\forall n > N_1$, $d(z_n, z_0) < \varepsilon$. Since :

i
$$\overline{\mathrm{B}(z_0, 2\varepsilon)} = \{ z \in \mathbb{H} \mid \mathrm{d}(z, z_0) \leq 2\varepsilon \}$$
 is a compact.

ii Γ acts discontinuously on \mathbb{H} . $\Rightarrow \{ \gamma \in \Gamma \mid \gamma(z_0) \in \overline{B_{2\varepsilon}(z_0)} \}$ is finite.

Therefore,
$$\exists N_2 \geq 1, \forall n > N_2, d(\gamma_n(z_0), z_0) > 2\varepsilon$$
.
For $n > \max\{N_1, N_2\}$:
$$\begin{cases} d(z_n, z_0) < \varepsilon \\ d(\gamma_n(z_0), z_0) > 2\varepsilon \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Hence:

$$2\varepsilon < d(\gamma_n(z_0), z_0) \le d(\gamma_n(z_0), \gamma_n(z_n)) + d(\gamma_n(z_n), z_0)$$
$$= d(z_0, z_n) + d(z_n, z_0)$$
$$= 2d(z_0, z_n)$$
$$< 2\varepsilon$$

43

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Contradiction arises.

Corollary

If Γ acts properly discontinuously on \mathbb{H} , then we can find $z_0 \in \mathbb{H}$ which is not fixed by any $\gamma \in \Gamma - \{id\}$.

Lemma 3

For $z_0 \in \mathbb{H}$ and a compact set $K \subseteq \mathbb{H}$:

$$E = \{ \gamma(z) = \frac{az+b}{cz+d} \mid ad-bc = 1, \ a, \ b, \ c, d \in \mathbb{R}, \gamma(z_0) \in K \} (\subseteq \mathbb{R}^4)$$

is compact.

44

Proof:

Since K is compact, we can choose k_1 , $k_2 > 0$: $\begin{cases} k_1 \leq \operatorname{Im}(\gamma(z_0)) = \frac{\operatorname{Im}(z_0)}{|cz_0+d|^2} & (1) \\ k_2 \geq \gamma(z_0) = |\frac{az_0+b}{cz_0+d}| & (2) \end{cases}$ Thus, $\begin{cases} |cz_0 + d| \le \sqrt{\frac{\operatorname{Im}(z_0)}{k_1}} = c_1 \quad (3) \\ |az_0 + b| \le k_2 \sqrt{\frac{\operatorname{Im}(z_0)}{k_1}} = c_2 \quad (4) \end{cases}$ From these constraints on a, b, c, d, we can deduce that E is bounded. Clearly it is also closed, and thus compact.

・ロット (口) ・ (口) ・ (口) ・ (口) ・ (口)

Proposition 6

Let Γ be a subgroup of $M\ddot{o}b(\mathbb{H})$. The following are equivalent:

- (i) Γ is Fuchsian;
- (ii) Γ acts properly discontinuously on \mathbb{H} .

Proof:

(i) \Rightarrow (ii): Let $z_0 \in \mathbb{H}$ and $K \subseteq \mathbb{H}$ be compact. Since $\{ \gamma \in \Gamma \mid \gamma(z_0) \in K \} = \{ \gamma \in \mathrm{M\"ob}(\mathbb{H}) \mid \gamma(z_0) \in K \} \cap \Gamma$, the intersection is finite. (Γ acts properly discontinuously.)

(ii) \Rightarrow (i): Assume Γ acts properly discontinuously on \mathbb{H} .

By the **Corollary**: $\exists z \in \mathbb{H}$ such that if $\gamma \in \Gamma$ and $\gamma(z) = z \Rightarrow \gamma = id$.

Assume for a contradiction, Γ is not discrete. Therefore, we can find a sequence $\begin{cases} \gamma_n \in \Gamma, n \ge 1 \\ \gamma_n \to id \text{ (Without loss of generality)} \end{cases}$ In particular, $\begin{cases} \gamma_n(z) \to z \text{ as } n \to \infty \\ \gamma_n(z) \neq z, n \ge 1 \end{cases}$ Thus, $\forall \varepsilon > 0, \{ \gamma \in \Gamma \mid \gamma(z) \in \overline{B(z, \varepsilon)} \}$ is infinite.

47

・ロット (雪) (山) (山) (山)

Proposition 7

Let Γ be a subgroup of Möb(\mathbb{H}). Then Γ acts properly discontinuously on \mathbb{H} if and only if for all $z \in \mathbb{H}$, $\Gamma(z)$, the orbit of z, is a discrete subset of \mathbb{H} .

Proof:

(⇒): Suppose Γ acts properly discontinuously on \mathbb{H} . Then Γ is a Fuchsian group, and hence $\Gamma(z)$ is a discrete subset of \mathbb{H} .

(\Leftarrow): Prove by contradiction: Suppose Γ does not act properly discontinuously on \mathbb{H} . Hence by the theorem, Γ is not discrete. Then using the previous sequence, we can see that the orbit of z is not discrete.

Summary

Group action:

- 1. Discreteness: $d_{\text{M\"ob}(\mathbb{H})}(\gamma_1, \gamma_2) > \delta > 0.$
- 2. Orbits: $\Gamma(z) = \{ \gamma \in \Gamma \mid \gamma(z) \}.$
- 3. Stabilizer: $\Gamma_z = \{\gamma \in \Gamma \mid \gamma(z) = z\}.$
- 4. Properly discontinuous: $\forall z_0 \in \mathbb{H}$ and any compact set $K \subseteq \mathbb{H}$, the set $\{ \gamma \in \Gamma \mid \gamma(z_0) \in K \}$ is finite.

Fuchisan group:

- 1. is a discrete subgroup of $M\ddot{o}b(\mathbb{H})$ or $M\ddot{o}b(\mathbb{D})$.
- 2. identity element is isolated.
- 3. orbit is discrete subset of \mathbb{H} .
- 4. acts properly discontinuously on $\mathbb H.$

Outline

- 1. Basics of group actions
- 2. Fuchsian groups
- 3. Fundamental domains
- 4. Dirichlet polygons
- 5. Reference

Open and closed subsets

Definition

A subset $Y \subset \mathbb{H}$ is said to be **open** if $\forall y \in Y, \exists \varepsilon > 0$ such that the open ball $B_{\varepsilon}(y) = \{z \in \mathbb{H} \mid d_{\mathbb{H}}(z, y) < \varepsilon\}$ of radius ε and centre y is contained in Y.

A subset $Y \subset \mathbb{H}$ is said to be **closed** if its complement $\mathbb{H} \setminus Y$ is open.

Examples:

- 1. The subset $\{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$ is open.
- 2. The subset $\{z \in \mathbb{H} \mid 0 \le Re(z) \le 1\}$ is closed.
- 3. The subset $\{z \in \mathbb{H} \mid 0 < Re(z) \le 1\}$ is neither open nor closed.
- 4. The subset \emptyset is both open and closed.

A D F A 目 F A E F A E F A Q Q

Open and closed subsets: Remark

Note that hyperbolic circles are Euclidean circles (albeit with different radii and centres).

Fact:

Let $C = \{w \in \mathbb{H} \mid d_{\mathbb{H}}(z, w) = r\}$ be a hyperbolic circle with centre $z \in \mathbb{H}$ and radius r > 0. Let $z = x_0 + iy_0$. Then C is a Euclidean circle with centre $(x_0, y_0 \cosh r)$ and radius $y_0 \sqrt{\cosh^2 r - 1} = y_0 \sinh r$.

Thus to prove a subset $Y \subset \mathbb{H}$ is open it is sufficient to find a Euclidean open ball around each point that is contained in Y.

In particular, the open subsets of \mathbb{H} are the same as the open subsets of the (Euclidean) upper half-plane.

Closure

Definition

Let $Y \subset \mathbb{H}$ be a subset. Then the **closure** of Y is the smallest closed subset containing Y. We denote the closure of Y by cl(Y).

Example

The closure of $\{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$ and $\{z \in \mathbb{H} \mid 0 < Re(z) \le 1\}$ is $\{z \in \mathbb{H} \mid 0 \le Re(z) \le 1\}$.

Properties of closed sets:

- 1. Any intersection of closed sets is closed.
- 2. The union of finitely many closed sets is closed.

Fundamental domain

Definition

Let Γ be a Fuchsian group. A **fundamental domain** F for Γ is an open subset of \mathbb{H} such that:

(i)
$$\bigcup_{\gamma \in \Gamma} \gamma(cl(F)) = \mathbb{H}$$

(ii) the images $\gamma(F)$ are pairwise disjoint; that is, $\gamma_1(F) \cap \gamma_2(F) = \emptyset$ if $\gamma_1, \gamma_2 \in \Gamma, \ \gamma_1 \neq \gamma_2$.

Remark

Since both γ and γ^{-1} are continuous maps, $\gamma(cl(F)) = cl(\gamma(F))$. Thus F is a fundamental domain if every point lies in the closure of some image $\gamma(F)$ and if two distinct images do not overlap. We say that the images of F under Γ **tessellate** \mathbb{H} .

Example of Fuchsian group (I): Integer translations

The subgroup Γ of Möb(\mathbb{H}) given by integer translations: $\Gamma_n(z) = \{\gamma_n | \gamma_n(z) = z + n, n \in \mathbb{Z}\}$ is a Fuchsian group.

Proof

Consider the set $F = \{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$. This is an open set. Clearly if Re(z) = a, then $Re(\gamma_n(z)) = n + a$. Hence

$$\gamma_n(F) = \{ z \in \mathbb{H} \mid n < Re(z) < n+1 \}$$

and

$$\gamma_n(cl(F)) = \{ z \in \mathbb{H} \, | \, n \le Re(z) \le n+1 \}$$

Hence $\mathbb{H} = \bigcup_{n \in \mathbb{Z}} \gamma_n(cl(F))$. It is also clear that if $\gamma_n(F)$ and $\gamma_m(F)$ intersect, then n = m. Hence F is a fundamental domain for Γ .

A fundamental domain and tessellation for $\Gamma = \{\gamma_n \mid \gamma_n(z) = z + n\}$

 ${
m Re}(z) = -1$ ${
m Re}(z) = 0$ ${
m Re}(z) = 1$ ${
m Re}(z) = 2$

57

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Example of Fuchsian group (II)

The subgroup $\Gamma = \{\gamma_n \mid \gamma_n(z) = 2^n z, n \in \mathbb{Z}\}$ of $\text{M\"ob}(\mathbb{H})$ is a Fuchsian group.

Proof

Let $F = \{z \in \mathbb{H} \mid 1 < |z| < 2\}$. This is an open set. Clearly, if 1 < |z| < 2 then $2^n < |\gamma_n(z)| < 2^{n+1}$. Hence

$$\gamma_n(F) = \{ z \in \mathbb{H} \, | \, 2^n < |z| < 2^{n+1} \}$$

and

$$\gamma_n(cl(F)) = \{ z \in \mathbb{H} \, | \, 2^n \le |z| \le 2^{n+1} \}$$

Hence $\mathbb{H} = \bigcup_{n \in \mathbb{Z}} \gamma_n(cl(F))$. It is also clear that if $\gamma_n(F)$ and $\gamma_m(F)$ intersect, then n = m. Hence F is a fundamental domain for Γ .

A fundamental domain and tessellation for $\Gamma = \{\gamma_n \mid \gamma_n(z) = 2^n z\}$

59

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Uniqueness of Fundamental domains

Suppose $\Gamma = {\text{Id}}$, the trivial group containing just one element. In this case, \mathbb{H} is the only fundamental domain for Γ . Now suppose $\Gamma \neq {\text{Id}}$. A fundamental domain is not uniquely determined by a non-trivial Fuchsian group: an arbitrary small perturbation gives another fundamental domain.

60

イロト 不得下 イヨト イヨト

Fundamental domains are not unique - continued

Let Γ be the cyclic group generated by the transformation $z \to 2z$. The fundamental domains for Γ are:

イロト 不得 とくき とくきとうき

Recall that: The boundary ∂F of a set F is defined to be the set $cl(F) \setminus int(F)$. Here cl(F) is the closure of F and int(F) is the interior of F.

Proposition

Let F_1 and F_2 be two fundamental domains for a Fuchsian group γ , with $\operatorname{Area}_{\mathbb{H}}(F_1) < \infty$. Assume that $\operatorname{Area}_{\mathbb{H}}(\partial F_1) = 0$ and $\operatorname{Area}_{\mathbb{H}}(\partial F_2) = 0$. Then $\operatorname{Area}_{\mathbb{H}}(F_1) = \operatorname{Area}_{\mathbb{H}}(F_2)$.

62

Proof of Proposition

Since $\operatorname{Area}_{\mathbb{H}}(\partial F_i) = 0$, $\operatorname{Area}_{\mathbb{H}}(cl(F_i)) = \operatorname{Area}_{\mathbb{H}}(F_i) \quad \forall i = 1, 2$ Hence, we have:

$$cl(F_1) \supset cl(F_1) \cap (\bigcup_{\gamma \in \Gamma} \gamma(F_2)) = \bigcup_{\gamma \in \Gamma} (cl(F_1) \cap \gamma(F_2))$$

As F_2 is a fundamental domain, the sets $cl(F_1) \cap \gamma(F_2)$ are pairwise disjoint.

Hence, using the facts that

- (i) the area of the union of disjoint sets is the sum of the areas of the sets,
- (ii) Möbius transformations of \mathbbm{H} preserve area.

A D F A 目 F A E F A E F A Q Q

Proof of Proposition - continued

We have:

$$Area_{\mathbb{H}}(cl(F_1)) \ge \sum_{\gamma \in \Gamma} Area_{\mathbb{H}}(cl(F_1) \cap \gamma(F_2))$$
$$= \sum_{\gamma \in \Gamma} Area_{\mathbb{H}}(\gamma^{-1}(cl(F_1)) \cap F_2)$$
$$= \sum_{\gamma \in \Gamma} Area_{\mathbb{H}}(\gamma(cl(F_1)) \cap F_2)$$

Since F_1 is a fundamental domain we have:

$$\bigcup_{\gamma \in \Gamma} \gamma(cl(F_1)) = \mathbb{H}$$

64

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Proposition - continued

Hence

$$\sum_{\gamma \in \Gamma} \operatorname{Area}_{\mathbb{H}}(\gamma(cl(F_1)) \cap F_2) \ge \operatorname{Area}_{\mathbb{H}}\left(\bigcup_{\gamma \in \Gamma} \gamma(cl(F_1)) \cap F_2\right)$$
$$= \operatorname{Area}_{\mathbb{H}}(F_2)$$

Hence

$$\operatorname{Area}_{\mathbb{H}}(F_1) = \operatorname{Area}_{\mathbb{H}}(cl(F_1)) \ge \operatorname{Area}_{\mathbb{H}}(F_2)$$

Interchanging F_1 and F_2 in the above gives the reverse inequality.

$$\operatorname{Area}_{\mathbb{H}}(F_2) = \operatorname{Area}_{\mathbb{H}}(cl(F_2)) \ge \operatorname{Area}_{\mathbb{H}}(F_1)$$

Hence $\operatorname{Area}_{\mathbb{H}}(F_1) = \operatorname{Area}_{\mathbb{H}}(F_2)$.

65

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Points to note

The area of a fundamental region, if it is finite, is a numerical invariant of the group.

Integer translations are examples of a Fuchsian group with a fundamental domain of infinite area.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

A Fuchsian group and its subgroup

Let Γ be a Fuchsian group and let $\Gamma_1 < \Gamma$ be a subgroup of Γ . Then Γ_1 is a discrete subgroup of the Möbius group $Möb(\mathbb{H})$ and so is itself a Fuchsian group.

Definition

Let G be a group. A subset H of G is a **subgroup** of G if it satisfies the following properties:

- Closure: If $a, b \in H$, then $ab \in H$.
- Identity: The identity element of G lies in H.
- Inverses: If $a \in H$, then $a^{-1} \in H$.

Definition

The **index** of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G.

A Fuchsian group and its subgroup

Proposition

Let Γ be a Fuchsian group and suppose that Γ_1 is a subgroup of Γ of index n. Let

$$\Gamma = \Gamma_1 \gamma_1 \cup \Gamma_1 \gamma_2 \cup \dots \cup \Gamma_1 \gamma_n$$

be a decomposition of Γ into cosets of Γ_1 . Let F be a fundamental domain for Γ . Then:

- (i) $F_1 = \gamma_1(F) \cup \gamma_2(F) \cup \cdots \cup \gamma_n(F)$ is a fundamental domain for Γ_1 ;
- (ii) if $\operatorname{Area}_{\mathbb{H}}(F)$ is finite then $\operatorname{Area}_{\mathbb{H}}(F_1) = n\operatorname{Area}_{\mathbb{H}}(F)$.

68

Summary: Fundamental domains

- A Fuchsian group is a discrete subgroup of the group Möb(ℍ) of all Möbius transformations of ℍ.
- 2. A subset $F \subset \mathbb{H}$ is a fundamental domain if, essentially, the images $\gamma(F)$ of F under the Möbius transformations $\gamma \in \Gamma$ tessellate (or tile) the upper half-plane \mathbb{H} .
- 3. The set $\{z \in \mathbb{H} \mid 0 < Re(z) < 1\}$ is a fundamental domain for the group of integer translations $\{\gamma_n(z) = z + n \mid n \in \mathbb{Z}\}$

Outline

- 1. Basics of group actions
- 2. Fuchsian groups
- 3. Fundamental domains
- 4. Dirichlet polygons
- 5. Reference

Introduction to Dirichlet polygon

Each Fuchsian group possesses a fundamental domain. The purpose of the following slides is to give a method for constructing a fundamental domain for a given Fuchsian group. The fundamental domain that we construct is called a **Dirichlet polygon**.

There are other methods for constructing fundamental domains that, in general, give different fundamental domains than a Dirichlet polygon; such an example is the Ford fundamental domain.

The construction given below is written in terms of the upper half-plane \mathbb{H} . The same construction works in the Poincaré disc \mathbb{D} .
Dirichlet polygon

Definition

Let C be a geodesic in \mathbb{H} . Then C divides \mathbb{H} into two components. These components are called **half-planes**.

Example 1: The imaginary axis determines two half-planes: $\{z \in \mathbb{H} \mid Re(z) < 0\}$ and $\{z \in \mathbb{H} \mid Re(z) > 0\}.$

Example 2:

The geodesic given by the semi-circle of unit radius centred at the origin also determines two half-planes (although they no longer look like Euclidean half-planes): $\{z \in \mathbb{H} \mid |z| < 1\}$ and $\{z \in \mathbb{H} \mid |z| > 1\}$.

Convex hyperbolic polygon

Definition

A convex hyperbolic polygon is the intersection of a finite number of halfplanes.

It is possible that an edge of a hyperbolic polygon to be an arc of the circle at infinity. For example, a polygon with one edge on the boundary (i) in the upper half-plane, and (ii) in the Poincaré disc.

イロト 不得下 イヨト イヨト

Perpendicular bisectors

Let $z_1, z_2 \in \mathbb{H}$. Recall that $[z_1, z_2]$ is the segment of the unique geodesic from z_1 to z_2 . The perpendicular bisector of $[z_1, z_2]$ is defined to be the unique geodesic perpendicular to $[z_1, z_2]$ that passes through the midpoint of $[z_1, z_2]$.

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Perpendicular bisectors: Proposition

Proposition

Let $z_1, z_2 \in \mathbb{H}$. The set of points $\{z \in \mathbb{H} \mid d_{\mathbb{H}}(z, z_1) = d_{\mathbb{H}}(z, z_2)\}$ that are equidistant from z_1 and z_2 is the perpendicular bisector of the line segment $[z_1, z_2]$.

Proof

Without loss of generality (by applying a Möbius isometry, if necessary), we can write:

$$\begin{cases} z_1 = i \\ z_2 = ir^2 \, (r > 1) \end{cases}$$

There is no loss in generality to assume that r > 1, since we can apply the Möbius transformation $z \mapsto -\frac{1}{z}$, if required.

75

Proof of proposition - continued

Recall that:

Let $a \leq b$. Then the hyperbolic distance between ia and ib is $\log \frac{b}{a}$. Moreover, the vertical line joining ia to ib is the unique path between ia and ib with length $\log \frac{b}{a}$; any other path from ia to ib has length strictly greater than $\log \frac{b}{a}$.

Using the above fact, it follows that the mid-point of $[i, ir^2]$ is at the point *ir*. It is clear that the unique geodesic through *ir* that meets the imaginary axis at right-angles is given by the semi-circle of radius *r* centred at 0.

Proof of proposition - continued

Recall that:

$$\cosh d_{\mathbb{H}}(z,w) = 1 + \frac{|z-w|^2}{2\operatorname{Im} z \operatorname{Im} w}$$

In our setting this implies that:

$$|z-i|^2 = \frac{|z-ir^2|^2}{r^2}$$

This simplifies to |z| = r, i.e. z lies on the semicircle of radius r, centred at 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Example

Let $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2, z_1, z_2 \in \mathbb{H}$. Show that the perpendicular bisector of $[z_1, z_2]$ can also be written as $\{z \in \mathbb{H} | y_2 | z - z_1 |^2 = y_1 | z - z_2 |^2\}.$

Solution:

By the previous Proposition, $z \in \mathbb{H}$ is on the perpendicular bisector of $[z_1, z_2]$ if and only if $d_{\mathbb{H}}(z, z_1) = d_{\mathbb{H}}(z, z_2)$. Note that:

$$d_{\mathbb{H}}(z, z_1) = d_{\mathbb{H}}(z, z_2)$$

$$\cosh d_{\mathbb{H}}(z, z_1) = \cosh d_{\mathbb{H}}(z, z_2)$$

$$1 + \frac{|z - z_1|^2}{2y_1 \operatorname{Im}(z)} = 1 + \frac{|z - z_2|^2}{2y_2 \operatorname{Im}(z)}$$

$$y_2 |z - z_1|^2 = y_1 |z - z_2|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Tools for Dirichlet polygon

Theorem

Let Γ be a non-trivial Fuchsian group. Then there exists a point $p \in \mathbb{H}$ that is not a fixed point for any non-trivial element of Γ . (That is, $\gamma(p) \neq p$ for all $\gamma \in \Gamma \setminus {\mathrm{Id}}$.)

Tools for Dirichlet polygon - continued

Definition: Let Γ be a Fuchsian group and let $p \in \mathbb{H}$ be a point such that $\gamma(p) \neq p$ for all $\gamma \in \Gamma \setminus \{\text{Id}\}$. Let γ be an element of Γ and suppose that γ is not the identity. The set

$$\{z \in \mathbb{H} \,|\, d_{\mathbb{H}}(z,p) < d_{\mathbb{H}}(z,\gamma(p))\}$$

consists of all points $z \in \mathbb{H}$ that are closer to p than to $\gamma(p)$.

Definition: We define the Dirichlet region to be:

 $D(p) = \{ z \in \mathbb{H} \mid d_{\mathbb{H}}(z, p) < d_{\mathbb{H}}(z, \gamma(p)) \text{ for all } \gamma \in \Gamma \setminus \{ \mathrm{Id} \} \}$

Thus the Dirichlet region is the set of all points z that are closer to p than to any other point in the orbit $\Gamma(p) = \{\gamma(p) \mid \gamma \in \Gamma\}$ of p under Γ .

Tools for Dirichlet polygon - continued

Fact: Let Γ be a Fuchsian group and let p be a point not fixed by any non-trivial element of Γ . Then the Dirichlet region D(p)is a fundamental domain for Γ . Moreover, if $\operatorname{Area}_{\mathbb{H}}(D(p)) < \infty$ then D(p) is a convex hyperbolic polygon; in particular it has finitely many edges.

Remark 1: There are many other hypotheses that ensure that D(p) is a convex hyperbolic polygon with finitely many edges; requiring D(p) to have finite hyperbolic area is probably the simplest. Fuchsian groups that have a convex hyperbolic polygon with finitely many edges as a Dirichlet region are called **geometrically** finite.

Remark 2: If D(p) has finitely many edges then we refer to D(p) as a Dirichlet polygon. Notice that some of these edges may be arcs of $\partial \mathbb{H}$. If there are finitely many edges then there are also finitely many vertices (some of which may be on $\partial \mathbb{H}$).

Remark 3: The Dirichlet polygon D(p) depends on p. If we choose a different point p, then we may obtain a different polygon with different properties, such as the number of edges.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Summary: procedure to construct a Dirichlet polygon for a given Fuchsian group

- 1. Choose $p \in \mathbb{H}$ such that $\gamma(p) \neq p, \forall \gamma \in \Gamma \setminus \{id\}.$
- 2. Let $\gamma \in \Gamma \setminus \{id\}$. Construct the geodesic segment $[p, \gamma(p)]$.
- 3. Let $L_p(\gamma)$ denote the perpendicular bisector of $[p, \gamma(p)]$.
- 4. Let $H_p(\gamma)$ denote the half-plane determined by $L_p(\gamma)$ that contains p.
- 5. Let

$$D(p) = \bigcap_{\gamma \in \Gamma \setminus \{id\}} H_p(\gamma)$$

83

Example (I): The group of all integer translations

Let Γ be the Fuchsian group $\{\gamma_n | \gamma_n(z) = z + n, n \in \mathbb{Z}\}$. Then $D(i) = \{z \in \mathbb{H} \mid -\frac{1}{2} < Re(z) < \frac{1}{2}\}.$

Solution:

Let p = i. Then clearly $\gamma_n(p) = i + n \neq p$ so that p is not fixed by any non-trivial element of Γ . As $\gamma_n(p) = i + n$, it is clear that the perpendicular bisector of $[p, \gamma_n(p)]$ is the vertical straight line with real part $\frac{n}{2}$. Hence,

$$H_p(\gamma_n) = \begin{cases} \{z \in \mathbb{H} \mid Re(z) < n/2\} & \text{if } n > 0\\ \{z \in \mathbb{H} \mid Re(z) > n/2\} & \text{if } n < 0 \end{cases}$$

84

Example (I) - continued

Hence,

$$D(p) = \bigcap_{\gamma \in \Gamma \setminus \{ \mathrm{Id} \}} H_p(\gamma)$$

= $H_p(\gamma_1) \cap H_p(\gamma_{-1})$
= $\{ z \in \mathbb{H} \mid -1/2 < \operatorname{Re}(z) < 1/2 \}$

85

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example (II)

Let = $\{\gamma_n | \gamma_n(z) = 2^n z, n \in \mathbb{Z}\}$. This is a Fuchsian group. Choose a suitable $p \in \mathbb{H}$ and construct a Dirichlet polygon D(p).

Solution: Let $\Gamma = \{\gamma_n \mid \gamma_n(z) = 2^n z\}$. Let p = i and note that $\gamma_n(p) = 2^n i \neq p$ unless n = 0. For each n, $[p, \gamma_n(p)]$ is the arc of imaginary axis from i to $2^n i$. Suppose first that n > 0. Recalling that for a < b we have $d_{\mathbb{H}}(ai, bi) = \log b/a$ it is easy to see that the midpoint of $[i, 2^n i]$ is at $2^{n/2} i$.

Proof - continued

Hence, $L_p(\gamma_n)$ is the semicircle of radius $2^{n/2}$ centred at the origin and

$$H_p(\gamma_n) = \{ z \in \mathbb{H} \mid |z| < 2^{n/2} \}$$

For n < 0, we can see that

$$H_p(\gamma_n) = \{ z \in \mathbb{H} \mid |z| > 2^{n/2} \}$$

Hence,

$$D(p) = \bigcap_{\gamma_n \in \Gamma \setminus \{ \mathrm{Id} \}} H_p(\gamma_n)$$
$$= \{ z \in \mathbb{H} \mid 1/\sqrt{2} < |z| < \sqrt{2} \}$$

87

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Outline

- 1. Basics of group actions
- 2. Fuchsian groups
- 3. Fundamental domains
- 4. Dirichlet polygons
- 5. Reference

Reference

- 1. Hyperbolic geometry, by James W. Anderson, Springer, 1999
- 2. Lecture notes by C. Walkden
- 3. Lecture notes by C. Series
- 4. Fuchsican Groups, by Svetlana Katok, Chicago Lectures in Mathematics, 1992
- 5. Notes by Pollicott
- 6. https://en.wikipedia.org/wiki/Group_action

7.

https://proofwiki.org/wiki/Definition:Orbit_(Group_Theory)

8. https://proofwiki.org/wiki/Definition:Stabilizer

89

Reference

- 9. https://en.wikipedia.org/wiki/Fuchsian_group
- $10.\ https://mathworld.wolfram.com/GroupAction.html$
- $11.\ https://encyclopediaofmath.org/wiki/Fuchsian_group$
- 12.

 $https://proof wiki.org/wiki/Identity_Mapping_is_Homeomorphism$